Atmospheric oxidation of N-PAC and nitro substituted N-PAC in water droplets

A pulse radiolysis technique was used to study the formation of OH-adducts of quinoline (Q) and 5-nitroquinoline (5NQ) and the subsequent reactions of the OH-adducts with O-2 in both acidic and alkaline aqueous solution. The rate constants in alkaline solution were:
\[k(Q+OH) = (9.0+/-1.0)\times10^9 \text{ dm}^3\text{mol}^{-1}\text{s}^{-1}, \]
\[k(5NQ+OH) = (5.4+/-0.5)\times10^9 \text{ dm}^3\text{mol}^{-1}\text{s}^{-1}, \]
\[k(Q-OH+O_2) = (9.9+/-0.9)\times10^8 \text{ dm}^3\text{mol}^{-1}\text{s}^{-1}, \]
\[k(5NQ-OH+O_2) = (1.1+/-0.1)\times10^6 \text{ dm}^3\text{mol}^{-1}\text{s}^{-1}. \]
The rate constants in acidic solution were:
\[k(Q+OH) = (4.0+/-0.5)\times10^9 \text{ dm}^3\text{mol}^{-1}\text{s}^{-1}, \]
\[k(5NQ+OH) = (1.4+/-0.1)\times10^9 \text{ dm}^3\text{mol}^{-1}\text{s}^{-1}, \]
\[k(Q-OH+O_2) = (9.9+/-0.9)\times10^8 \text{ dm}^3\text{mol}^{-1}\text{s}^{-1}, \]
\[k(5NQ-OH+O_2) = (8.7+/-0.6)\times10^5 \text{ dm}^3\text{mol}^{-1}\text{s}^{-1}. \] Absorption spectra of the OH-adducts were also measured. The results suggest that the lifetime of quinoline and 5-nitroquinoline with respect to reaction with OH in water droplets in the atmosphere is less than 1 hour. It is estimated that the degradation of Q is accelerated in the presence of aqueous droplets with comparable contributions from aqueous and gas phase chemistry at neutral pH. Under acidic conditions the aqueous phase degradation is predicted to dominate. For 5NQ the aqueous phase degradation is predicted to dominate regardless of pH.

General information
State: Published
Organisations: Risø National Laboratory for Sustainable Energy
Contributors: Feilberg, A., Holcman, J., Nielsen, T., Sehested, K.
Pages: 137-150
Publication date: 1999
Peer-reviewed: Yes

Publication information
Journal: Polycyclic Aromatic Compounds
Volume: 14
ISSN (Print): 1040-6638
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.58 SJR 0.543 SNIP 0.627
Web of Science (2017): Impact factor 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.28 SJR 0.402 SNIP 0.658
Web of Science (2016): Impact factor 1.569
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.77 SJR 0.244 SNIP 0.415
Web of Science (2015): Impact factor 0.959
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.87 SJR 0.26 SNIP 0.381
Web of Science (2014): Impact factor 0.76
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.65 SJR 0.241 SNIP 0.364
Web of Science (2013): Impact factor 0.833
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.2 SJR 0.456 SNIP 0.61
Web of Science (2012): Impact factor 1.044
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.91 SJR 0.359 SNIP 0.483
Web of Science (2011): Impact factor 1.023
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.412 SNIP 0.499
Web of Science (2010): Impact factor 0.982
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.34 SNIP 0.391
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.402 SNIP 0.553
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.297 SNIP 0.388
Scopus rating (2006): SJR 0.329 SNIP 0.415
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.302 SNIP 0.305
Scopus rating (2004): SJR 0.304 SNIP 0.49
Scopus rating (2003): SJR 0.288 SNIP 0.263
Scopus rating (2002): SJR 0.324 SNIP 0.472
Scopus rating (2001): SJR 0.203 SNIP 0.317
Scopus rating (2000): SJR 0.806 SNIP 0.456
Scopus rating (1999): SJR 0.559 SNIP 0.784
Original language: English
DOIs:
10.1080/10406639908019120
Source: orbit
Source-ID: 300842
Research output: Research - peer-review ; Journal article – Annual report year: 2000