Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

View graph of relations

The electronic Lorentz theory is employed to explain the optical properties of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the electromagnetic response of an individual split-ring meta-atom is determined, and the effective permittivity tensor of the metamaterial is calculated for normal incidence of light. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permittivity tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical properties of planar chiral structures. Its transmission spectra are different for right-handed versus left-handed circular polarization of the incident wave, so the structure changes its transmittance when the direction of incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split ring. The proposed approach can be generalized to a wide variety of metal-dielectric metamaterial geometries.
Original languageEnglish
JournalPhysical Review B (Condensed Matter and Materials Physics)
Publication date2012
Volume86
Issue7
Pages075138
ISSN1098-0121
DOIs
StatePublished

Bibliographical note

Copyright 2012 American Physical Society.

CitationsWeb of Science® Times Cited: 8
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 10591104