Asymmetric active nano-particles for directive near-field radiation

Asymmetric active nano-particles for directive near-field radiation
In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms of radiated power, near-field and power flow distributions as well as the far-field directivity.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Electromagnetic Systems, Technical University of Denmark
Contributors: Arslanagic, S., Thorsen, R. O.
Number of pages: 2
Pages: 1-2
Publication date: 2016

Host publication information
Title of host publication: 2016 USNC-URSI Radio Science Meeting
Publisher: IEEE
ISBN (Print): 9781509028528
Keywords: Single antennas, antenna radiation patterns, directive antennas, nanoparticles, asymmetric active nanoparticles, directive near-field radiation, cylindrical active coated nanoparticles, geometrical asymmetries, near-by magnetic line source, radiated power, power flow distribution, far-field directivity, nano-antennas
DOIs:
10.1109/USNC-URSI.2016.7588482
Source: FindIt
Source-ID: 2347538918
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2016 › Research › peer-review