Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals

Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals or humans. The emergence of resistant bacteria and resistance genes following the use of antimicrobial agents is relatively well documented and it seems evident that all antimicrobial agents will select for resistance. However, current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance. (C) 1999 Elsevier Science B.V. and International Society of Chemotherapy. All rights reserved.

General information
State: Published
Organisations: Division of Microbiology and Risk Assessment, National Food Institute
Contributors: Aarestrup, F. M.
Pages: 279-285
Publication date: Aug 1999
Peer-reviewed: Yes

Publication information
Journal: International Journal of Antimicrobial Agents
Volume: 12
Issue number: 4
ISSN (Print): 0924-8579
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.54 SJR 1.699 SNIP 1.397
Web of Science (2017): Impact factor 4.253
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.38 SJR 1.608 SNIP 1.316
Web of Science (2016): Impact factor 4.307
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.45 SJR 1.703 SNIP 1.541
Web of Science (2015): Impact factor 4.097
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.45 SJR 1.477 SNIP 1.64
Web of Science (2014): Impact factor 4.296
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.63 SJR 1.706 SNIP 1.566
Web of Science (2013): Impact factor 4.259
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.57 SJR 1.633 SNIP 1.496
Web of Science (2012): Impact factor 4.415
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.15 SJR 1.388 SNIP 1.316