Assessment of potential biomass energy production in China towards 2030 and 2050 - DTU Orbit (17/11/2018)

Assessment of potential biomass energy production in China towards 2030 and 2050

The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

General information
State: Published
Organisations: Department of Energy Conversion and Storage
Contributors: Zhao, G.
Pages: 47-66
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: International Journal of Sustainable Energy
Volume: 37
Issue number: 1
ISSN (Print): 1478-6451
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.17 SJR 0.471 SNIP 0.531
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.92 SJR 0.414 SNIP 0.719
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.63 SJR 0.346 SNIP 0.509
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.73 SJR 0.351 SNIP 0.568
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.88 SJR 0.337 SNIP 0.727
ISI indexed (2013): ISI indexed no
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.99 SJR 0.503 SNIP 0.795
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.75 SJR 0.268 SNIP 0.592
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.212 SNIP 0.429
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.136 SNIP 0.215
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.223 SNIP 0.313
Scopus rating (2007): SJR 0.191 SNIP 0.527
Scopus rating (2006): SJR 0.201 SNIP 0.884
Scopus rating (2005): SJR 0.231 SNIP 0.611
Scopus rating (2004): SJR 0.107 SNIP 0.045
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.16 SNIP 0.596