Assessment of Optical Coherence Tomography Imaging in the Diagnosis of Non-Melanoma Skin Cancer and Benign Lesions Versus Normal Skin: Observer-Blinded Evaluation by Dermatologists and Pathologists

BACKGROUND Optical coherence tomography (OCT) is an optical imaging technique that may be useful in diagnosis of non-melanoma skin cancer (NMSC). OBJECTIVES To describe OCT features in NMSC such as actinic keratosis (AK) and basal cell carcinoma (BCC) and in benign lesions and to assess the diagnostic accuracy of OCT in differentiating NMSC from benign lesions and normal skin. METHODS AND MATERIALS OCT and polarization-sensitive (PS) OCT from 104 patients were studied. Observer-blinded evaluation of OCT images from 64 BCCs, 1 baso-squamous carcinoma, 39 AKs, two malignant melanomas, nine benign lesions, and 105 OCT images from perilesional skin was performed; 50 OCT images of NMSC and 50 PS-OCT images of normal skin were evaluated twice. RESULTS Sensitivity was 79% to 94% and specificity 85% to 96% in differentiating normal skin from lesions. Important features were absence of well-defined layering in OCT and PS-OCT images and dark lobules in BCC. Discrimination of AK from BCC had an error rate of 50% to 52%. CONCLUSION OCT features in NMSC are identified, but AK and BCC cannot be differentiated. OCT diagnosis is less accurate than clinical diagnosis, but high accuracy in distinguishing lesions from normal skin, crucial for delineating tumor borders, was obtained.

General information
State: Published
Organisations: Teraherts Technologies and Biophotonics, Department of Photonics Engineering, Copenhagen University Hospital
Pages: 965-972
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Dermatologic Surgery
Volume: 35
Issue number: 6
ISSN (Print): 1076-0512
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.48 SJR 1.168 SNIP 1.286
Web of Science (2017): Impact factor 2.471
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.35 SJR 0.969 SNIP 1.256
Web of Science (2016): Impact factor 2.351
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.42 SJR 1.222 SNIP 1.289
Web of Science (2015): Impact factor 1.936
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.25 SJR 0.949 SNIP 1.197
Web of Science (2014): Impact factor 2.109
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.4 SJR 1.011 SNIP 1.079
Web of Science (2013): Impact factor 2.467
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.59 SJR 1.089 SNIP 1.252
Web of Science (2012): Impact factor 1.866
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.64 SJR 1.018 SNIP 1.245
Web of Science (2011): Impact factor 1.798
ISI indexed (2011): ISI indexed yes