Applying Numerical Weather Prediction Models to the Production of New European Wind Atlas: Sensitivity studies of the wind climate to the planetary boundary layer parametrization

Reliable and precise information about the wind speed climate is crucial for the development of wind energy. Meteorological processes in the mesoscale (2 – 200 km) can be represented using Numerical Weather Prediction (NWP) models such as the Weather Research and Forecast model (WRF), but before their application for creating wind energy atlases, their results and sensitivity to modelling parameters should be investigated. Here the WRF model wind speed results for the year 2015 for the Baltic Sea region are investigated, and the effect of the planetary boundary layer parametrization scheme is analyzed.

General information
State: Published
Organisations: Department of Wind Energy, Resource Assessment Modelling, University of Oldenburg, University of Latvia, Fraunhofer Institute for Wind Energy Systems IWES, WeatherTech Scandinavia AB
Contributors: Sile, T., Hahmann, A. N., Witha, B., Dorenkamper, M., Baltcheffsky, M., Soderberg, S.
Number of pages: 5
Publication date: 2019

Host publication information
Title of host publication: 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)
Publisher: IEEE
ISBN (Electronic): 978-1-5386-6903-7
Keywords: Wind atlas, WRF, Wind speed, Mesoscale modelling, Wind energy
DOI: 10.1109/RTUCON.2018.8659881
Source: FindIt
Source-ID: 2444288830
Research output: Research - peer-review > Article in proceedings – Annual report year: 2019