Applications of amorphous track structure models for correction of ionization quenching in organic scintillators exposed to ion beams - DTU Orbit (29/01/2019)

Applications of amorphous track structure models for correction of ionization quenching in organic scintillators exposed to ion beams

The scintillation response of organic plastic scintillators irradiated with heavy ions is investigated with the open-source code ExcitonQuenching. The software relies on amorphous track structure theory to account for the radial energy deposition by secondary electrons (EDSE) in ion tracks. The kinematic Blanc model is applied to evaluate the ionization quenching for a given ion by taking the decay time, light yield, and density of the scintillator into account. ExcitonQuenching predicts the scintillation response without a priori knowledge of any measured response curves in contrast to other EDSE models, such as the correction method due to Birks, which rely on free fitting parameters for each ion. ExcitonQuenching is validated against published measurements of the Pilot-U scintillator exposed to several ions. The agreement with experimental data is between 5% and 9% for ions with atomic number but deviates significantly for heavier ions.

General information
State: Accepted/In press
Organisations: Center for Nuclear Technologies, Radiation Physics
Contributors: Christensen, J. B., Andersen, C. E.
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Radiation Measurements
ISSN (Print): 1350-4487
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.33 SJR 0.509 SNIP 1.035
Web of Science (2017): Impact factor 1.369
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.15 SJR 0.536 SNIP 1.007
Web of Science (2016): Impact factor 1.442
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.26 SJR 0.639 SNIP 1.147
Web of Science (2015): Impact factor 1.071
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.38 SJR 0.642 SNIP 1.242
Web of Science (2014): Impact factor 1.213
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.21 SJR 0.612 SNIP 1.063
Web of Science (2013): Impact factor 1.14
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.03 SJR 0.586 SNIP 0.841
Web of Science (2012): Impact factor 0.861
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.19 SJR 0.651 SNIP 1.176