Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models - DTU Orbit (26/01/2019)

Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models

Eco-exergy has been widely used in the assessment of ecosystem health, parameter estimations, calibrations, validations and prognoses. It offers insights into the understanding of ecosystem dynamics and disturbance-driven changes. Particularly, structurally dynamic models (SDMs), which are developed using eco-exergy as the goal function, have been applied in explaining and exploring ecosystem properties and changes in community structure driven by biotic and abiotic factors. In this paper, we review the application of eco-exergy for the assessment of ecosystem health and development of structurally dynamic models (SDMs). The limitations and possible future applications of the approach are also addressed.

(C) 2009 Elsevier B.V. All rights reserved.

General information
State: Published
Organisations: Section for Population- and Ecosystem Dynamics, National Institute of Aquatic Resources
Contributors: Zhang, J., Gürkan, Z., Jørgensen, S.
Pages: 693-702
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Ecological Modelling
Volume: 221
Issue number: 4
ISSN (Print): 0304-3800
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.69 SJR 1.084 SNIP 1.088
Web of Science (2017): Impact factor 2.507
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.43 SJR 0.967 SNIP 1.09
Web of Science (2016): Impact factor 2.363
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.43 SJR 1.082 SNIP 1.097
Web of Science (2015): Impact factor 2.275
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.7 SJR 1.132 SNIP 1.341
Web of Science (2014): Impact factor 2.321
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.53 SJR 1.148 SNIP 1.318
Web of Science (2013): Impact factor 2.326
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.28 SJR 1.045 SNIP 1.249
Web of Science (2012): Impact factor 2.069
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.34 SJR 1.186 SNIP 1.128
Web of Science (2011): Impact factor 2.326
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.085 SNIP 1.125
Web of Science (2010): Impact factor 1.769
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.31 SNIP 1.249
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.355 SNIP 1.292
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.353 SNIP 1.37
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.229 SNIP 1.551
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.451 SNIP 1.311
Scopus rating (2004): SJR 1.055 SNIP 1.092
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.174 SNIP 1.247
Scopus rating (2002): SJR 0.906 SNIP 1.097
Scopus rating (2001): SJR 0.967 SNIP 0.994
Scopus rating (2000): SJR 0.968 SNIP 0.921
Scopus rating (1999): SJR 0.896 SNIP 0.85
Original language: English
DOIs: 10.1016/j.ecolmodel.2009.10.017
Source: orbit
Source-ID: 253083
Research output: Research - peer-review > Journal article – Annual report year: 2010