Application of a synchronous generator with a boost converter in wind turbines: an experimental overview

An electrical structure of a variable-speed wind turbine based on an externally excited synchronous generator; a passive diode rectifier; and a boost converter is discussed in this study. The clear advantage of such a system is its lower-semiconductor devices count. A brief theoretical explanation of such a system is included. A boost converter normally utilizes an inductor (energy storage) to boost the voltage level from its input to a higher output value. This study analyses the possibility of using the generator inductance as a boost inductor. It is discussed and verified in the study that for the given switching frequency of the boost converter (fs=1 kHz), the generator sub-transient inductance (not the synchronous inductance) appears as an equivalent inductance seen by the boost converter. The parasitic capacitors present in the generator terminals are often neglected from design issues. It is presented in the study that such capacitors can be a major issue when high-frequency switching is applied to the voltage at the generator terminals. Some major results from the experimental work are included. The experimental setup used in this work is a scaled down 7.5= kVA system.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy
Contributors: Sharma, R., Rasmussen, T. W., Jensen, B. B.
Pages: 414-423
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: I E T Renewable Power Generation
Volume: 6
Issue number: 6
ISSN (Print): 1752-1416
Ratings:
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 4.18 SJR 0.979 SNIP 1.453
 Web of Science (2017): Impact factor 3.488
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 3.55 SJR 0.878 SNIP 1.434
 Web of Science (2016): Impact factor 2.635
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 2
 Scopus rating (2015): CiteScore 3.13 SJR 0.976 SNIP 1.555
 Web of Science (2015): Impact factor 1.562
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 2
 Scopus rating (2014): CiteScore 3.56 SJR 1.229 SNIP 2.282
 Web of Science (2014): Impact factor 1.904
 BFI (2013): BFI-level 2
 Scopus rating (2013): CiteScore 4.96 SJR 1.601 SNIP 2.799
 Web of Science (2013): Impact factor 2.28
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 2
 Scopus rating (2012): CiteScore 4.64 SJR 1.353 SNIP 2.787
 Web of Science (2012): Impact factor 1.718
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 1
 Scopus rating (2011): CiteScore 4.43 SJR 1.204 SNIP 2.301
 Web of Science (2011): Impact factor 1.742
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.617 SNIP 2.54
Web of Science (2010): Impact factor 2.328
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.705 SNIP 2.834
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.721 SNIP 2.413
Original language: English
DOI:
10.1049/iet-rpg.2011.0210
Source: dtu
Source-ID: n::oai:DTIC-ART:inspec/377832235::25443
Research output: Research - peer-review > Journal article – Annual report year: 2013