Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process - DTU Orbit (18/12/2018)

Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process

CHO cells have become the favorite expression system for large scale production of complex biopharmaceuticals. However, industrial strategies for upstream process development are based on empirical results, due to a lack of fundamental understanding of intracellular activities. Genome scale models of CHO cells have been reconstructed to provide an economical way of analyzing and interpreting large-omics datasets, since they add cellular context to the data. Here the most recently available CHO-DG44 genome-scale specific model was manually curated and tailored to the metabolic profile of cell lines used for industrial protein production, by modifying 601 reactions. Generic changes were applied to simplify the model and cope with missing constraints related to regulatory effects as well as thermodynamic and osmotic forces. Cell line specific changes were related to the metabolism of high yielding production cell lines. The model was semi-constrained with 24 metabolites measured on a daily basis in n=4 independent industrial 2 L fed batch cell culture processes for a therapeutic antibody production.

This study is the first adaptation of a genome scale model for CHO cells to an industrial process, that successfully predicted cell phenotype. The tailored model predicted accurately both the exometabolomics data (r²≥ 0.8 for 96% of the considered metabolites) and growth rate (r²=0.91) of the industrial cell line. Flux distributions at different days of the process were analyzed for validation and suggestion of strategies for medium optimization. This study shows how to adapt a genome scale model to an industrial process and sheds light on the metabolic specificities of a high production process. The curated genome scale model is a great tool to gain insights into intracellular fluxes and to identify possible bottlenecks impacting cell performances during production process. The general use of genome scale models for modeling industrial recombinant cell lines is a long-term investment that will highly benefit process development and speed up time to market.

General information

State: Published
Organisations: Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Network Engineering of Eukaryotic Cell factories, Technical University of Denmark, University of Liege, UCB Pharma
Contributors: Calmels, C., McCann, A., Malphettes, L., Andersen, M. R.
Number of pages: 11
Pages: 9-19
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Metabolic Engineering
Volume: 51
ISSN (Print): 1096-7176
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.95 SJR 3.337 SNIP 1.787
Web of Science (2017): Impact factor 7.674
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.33 SJR 3.626 SNIP 1.865
Web of Science (2016): Impact factor 8.142
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.2 SJR 3.6 SNIP 1.809
Web of Science (2015): Impact factor 8.201
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.23 SJR 3.395 SNIP 2.009
Web of Science (2014): Impact factor 6.767
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 8.43 SJR 4.036 SNIP 2.164
Web of Science (2013): Impact factor 8.258
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes