Application of 119Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural 119Sn Isotope Abundance - DTU Orbit (09/12/2018)

Application of 119Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural 119Sn Isotope Abundance

119Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5–40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders of magnitude in the case of dehydrated Sn-BEA samples as compared to conventional methods. In the latter case, the reconstruction of the quantitative spectrum without the loss of sensitivity is shown to be possible. The method proposed allows obtaining 119Sn MAS NMR spectra with improved resolution for Sn-BEA zeolites with natural 119Sn isotope abundance using conventional MAS NMR equipment.

General information
State: Published
Organisations: Department of Chemistry, Organic Chemistry, Lomonosov Moscow State University, Haldor Topsoe AS
Number of pages: 5
Pages: 1249-1253
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: The Journal of Physical Chemistry Letters
Volume: 7
ISSN (Print): 1948-7185
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.37 SJR 4.667 SNIP 1.595
Web of Science (2017): Impact factor 8.709
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.18 SJR 4.602 SNIP 1.651
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.04 SJR 4.143 SNIP 1.758
Web of Science (2015): Impact factor 8.539
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7 SJR 3.725 SNIP 1.71
Web of Science (2014): Impact factor 7.458
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.61 SJR 3.529 SNIP 1.608
Web of Science (2013): Impact factor 6.687
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.3 SJR 3.965 SNIP 1.742
Web of Science (2012): Impact factor 6.585
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.95 SJR 3.283 SNIP 1.613
Web of Science (2011): Impact factor 6.213
ISI indexed (2011): ISI indexed no