Antiresonant hollow core fiber with seven nested capillaries

We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ~33μm and a core wall of ~780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.

General information
State: Published
Organisations: Department of Photonics Engineering, Ultrafast Infrared and Terahertz Science, Department of Informatics and Mathematical Modeling, Fiber Sensors and Supercontinuum Generation, Department of Applied Mathematics and Computer Science, Risø National Laboratory for Sustainable Energy, University of Central Florida
Pages: 402-3
Publication date: 2016

Host publication information
Title of host publication: Proceedings of 2016 IEEE Photonics Conference
Publisher: IEEE
ISBN (Print): 978-1-5090-1906-9
(2016 IEEE Photonics Conference (ipc)).
Keywords: Optical fiber communication, Optimized production technology, Loss measurement, Electron tubes, Propagation losses, Optical fiber losses, Optical fibre fabrication, cladding, splicing, joining, Optical propagation, dispersion and attenuation in fibres, Optical communication devices, equipment and systems, Fibre optics, Optical communication, optical fibre cladding, optical fibre communication, optical fibre fabrication, optical fibre losses, antiresonant hollow core fiber, nested capillaries, robust single mode operation, broad transmission bandwidth, fiber fabrication, propagation loss
Electronic versions:
2016_IEEE_Photonics.pdf
DOIs:
10.1109/IPCon.2016.7831157
Source: FindIt
Source-ID: 2351617100
Research output: Research - peer-review › Article in proceedings – Annual report year: 2017