View graph of relations

Practical limitations exist regarding the effectiveness of flavonoids as antioxidants in many food systems, possibly due to their poor solubility and miscibility in lipidic environments. Current strategies to improve these properties include enzymatically acylating flavonoids with lipophilic moieties. Herein, two derivatives of rutin (possessing C12:0 or C16:0 acyl groups) were assessed for their antioxidant properties, and compared with their parent compound, rutin and with butylated hydroxytoluene (BHT). While all compounds exhibited relatively strong radical scavenging abilities, modified rutin compounds exhibited decreased reducing power and metal chelating abilities as compared to rutin. Conversely, investigations on the oxidation of human low density lipoprotein (LDL) revealed that rutin laurate was most effective in inhibiting oxidation by prolonging LDL lag time for an in vitro system. With regards to in vivo considerations, a pre-treatment step confirmed that the ester bond linking rutin and acyl moieties was most susceptible to hydrolysis by digestive enzymes, while rutin itself was not degraded. Thus, acylation of rutin with medium or long chain fatty acids may result in improved antioxidant abilities in more complex systems, including LDL-oxidation assays. Likely reasons may include improved lipophilic solubility and partitioning properties allowing for better accessibility to the actual site of oxidation. (C) 2010 Elsevier Ltd. All rights reserved.
Original languageEnglish
JournalFood Chemistry
Publication date2010
Volume123
Issue2
Pages221-230
ISSN0308-8146
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 27
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5221216