Anthropometry, DXA and leptin reflect subcutaneous but not visceral abdominal adipose tissue by MRI in 197 healthy adolescents - DTU Orbit (26/11/2018)

Anthropometry, DXA and leptin reflect subcutaneous but not visceral abdominal adipose tissue by MRI in 197 healthy adolescents

Background
Abdominal fat distribution is associated with the development of cardio-metabolic disease independently of body mass index (BMI). We assessed anthropometry, serum adipokines, and DXA as markers of abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) using magnetic resonance imaging (MRI). Methods

We performed a cross-sectional study that included 197 healthy adolescents (114 boys) aged 10–15 years nested within a longitudinal population-based cohort. Clinical examination, blood sampling, DXA, and abdominal MRI were performed. SAT% and VAT% were adjusted to total abdominal volume. Results

Girls had a higher SAT% than did boys in early and late puberty (16 vs. 13%, P<0.01 and 20 vs. 15%, P=0.001, respectively), whereas VAT% was comparable (7% in both genders, independently of puberty). DXA android fat% (standard deviation score (SDS)), suprailiac skinfold thickness (SDS), leptin, BMI (SDS), waist-to-height ratio (WHtR), and waist circumference (SDS) correlated strongly with SAT% (descending order: r=0.90–0.55, all P<0.001) but weakly with VAT% (r=0.49–0.06). Suprailiac skinfold was the best anthropometric marker of SAT% (girls: R²=48.6%, boys: R²=65%, P<0.001) and VAT% in boys (R²=16.4%, P<0.001). WHtR was the best marker of VAT% in girls (R²=7.6%, P=0.007). Conclusions

Healthy girls have a higher SAT% than do boys, whereas VAT% is comparable, independently of puberty. Anthropometry and circulating leptin are valid markers of SAT%, but not of VAT%.

General information

State: Published

Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, University of Copenhagen

Contributors: Tinggaard, J., Hagen, C. P., Christensen, A. N., Mouritsen, A., Mieritz, M. G., Wohlfahrt-Veje, C., Helge, J. W., Beck, T. N., Faella, E., Larsen, R., Jensen, R. B., Juul, A. C., Main, K. M.

Pages: 620-628

Publication date: 2017

Peer-reviewed: Yes

Publication information

Journal: Pediatric Research

Volume: 82

ISSN (Print): 0031-3998

Ratings:

- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 2.91 SJR 1.304 SNIP 0.998
- Web of Science (2017): Impact factor 3.123
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 2.88 SJR 1.439 SNIP 1.048
- Web of Science (2016): Impact factor 2.882
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 2.76 SJR 1.36 SNIP 1.009
- Web of Science (2015): Impact factor 2.761
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 2.69 SJR 1.417 SNIP 1.042
- Web of Science (2014): Impact factor 2.314
- BFI (2013): BFI-level 2
- Scopus rating (2013): CiteScore 2.87 SJR 1.368 SNIP 1.037
- Web of Science (2013): Impact factor 2.84
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 2
- Scopus rating (2012): CiteScore 3.05 SJR 1.385 SNIP 1.153
- Web of Science (2012): Impact factor 2.673
- ISI indexed (2012): ISI indexed yes