Anthropometry, DXA and leptin reflect subcutaneous but not visceral abdominal adipose tissue by MRI in 197 healthy adolescents - DTU Orbit (26/02/2019)

Background Abdominal fat distribution is associated with the development of cardio-metabolic disease independently of body mass index (BMI). We assessed anthropometry, serum adipokines, and DXA as markers of abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) using magnetic resonance imaging (MRI). Methods We performed a cross-sectional study that included 197 healthy adolescents (114 boys) aged 10–15 years nested within a longitudinal population-based cohort. Clinical examination, blood sampling, DXA, and abdominal MRI were performed. SAT% and VAT% were adjusted to total abdominal volume. Results Girls had a higher SAT% than did boys in early and late puberty (16 vs. 13%, P<0.01 and 20 vs. 15%, P=0.001, respectively), whereas VAT% was comparable (7% in both genders, independently of puberty). DXA android fat% (standard deviation score (SDS)), suprailiac skinfold thickness (SDS), leptin, BMI (SDS), waist-to-height ratio (WHtR), and waist circumference (SDS) correlated strongly with SAT% (descending order: r=0.90–0.55, all P<0.001) but weakly with VAT% (r=0.49–0.06). Suprailiac skinfold was the best anthropometric marker of SAT% (girls: R²=48.6%, boys: R²=65%, P<0.001) and VAT% in boys (R²=16.4%, P<0.001). WHtR was the best marker of VAT% in girls (R²=7.6%, P=0.007). Conclusions Healthy girls have a higher SAT% than do boys, whereas VAT% is comparable, independently of puberty. Anthropometry and circulating leptin are valid markers of SAT%, but not of VAT%.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, University of Copenhagen
Pages: 620-628
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Pediatric Research
Volume: 82
ISSN (Print): 0031-3998
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.91 SJR 1.304 SNIP 0.998
Web of Science (2017): Impact factor 3.123
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.88 SJR 1.439 SNIP 1.048
Web of Science (2016): Impact factor 2.882
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.76 SJR 1.36 SNIP 1.009
Web of Science (2015): Impact factor 2.761
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.69 SJR 1.417 SNIP 1.042
Web of Science (2014): Impact factor 2.314
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.87 SJR 1.368 SNIP 1.037
Web of Science (2013): Impact factor 2.84
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.05 SJR 1.385 SNIP 1.153