Anthropogenic 129I in the sediment cores in the East China sea: Sources and transport pathways

With the increased numbers of nuclear power plants constructed along the east coast of China, it is important to know radioactive sources and transport pathways between land and sea, in order to better understand the impact of these nuclear facilities to the marine environment. Two sediment cores collected from the East China Sea dated to 1959–2010 were analyzed for long-lived radioactive 129I and stable 127I. It was observed that 129I levels (129I/127I ratio of (15.0–75.0) × 10^{-12}) were significantly increased compared to the pre-nuclear value (129I/127I = 1.5 × 10^{-12}). Some 129I peaks were observed in layers of 1959, 1966, 1971 and 1976 (1977), corresponding to the atmospheric nuclear weapon tests at Pacific Proving Grounds and Lop Nor. The high values of 129I after the late 1970s are attributed to the releases from the European reprocessing plants. In addition to ocean current transport, the atmospheric dispersion through the interaction of the Westerlies with East Asia monsoon is the important pathway of large-scale transport of pollutants from high latitude West Europe to middle latitude East Asia. Riverine input is the main transport pathway of radioactive pollutants released from Lop Nor to the East China Sea through the atmospheric dispersion, deposition and runoff processes. The sources and transport pathway of anthropogenic 129I in the ECS was investigated to estimate the impact of the human nuclear activities to the marine ecosystem in the east China sea and to improve the understanding of pollutant dispersion.

General information
State: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Radioecology and Tracer Studies, East China Normal University, Chinese Academy of Sciences
Contributors: Zhao, X., Hou, X., Du, J., Fan, Y.
Pages: 443-452
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Environmental Pollution
Volume: 245
ISSN (Print): 0269-7491
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5 SJR 1.615 SNIP 1.46
Web of Science (2017): Impact factor 4.358
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.27 SJR 1.827 SNIP 1.74
Web of Science (2016): Impact factor 5.099
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.72 SJR 2.003 SNIP 1.75
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.57 SJR 1.987 SNIP 2.005
Web of Science (2014): Impact factor 4.143
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.35 SJR 1.976 SNIP 1.94
Web of Science (2013): Impact factor 3.902
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.03 SJR 2.038 SNIP 1.74
Web of Science (2012): Impact factor 3.73