Angle resolved characterization of nanostructured and conventionally textured silicon solar cells

We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell is characterized at 100 different angle combinations. The angle resolved photovoltaic properties are summarized in terms of the average, angle-dependent electrical power output normalized to the power output at normal incidence and differently textured cells on different silicon substrates are compared in terms of angle resolved performance. The results show a 3% point improvement in average electrical power output normalized with respect to normal incidence power output of RIE textured, multicrystalline Si cells compared to conventional multicrystalline Si cells and above 1% point improvement of RIE textured monocrystalline Si cells compared to conventional monocrystalline Si cells.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Silicon Microtechnology, Nanoprobes, Department of Physics, Experimental Surface and Nanomaterials Physics, Technical University of Denmark, Institute for Energy Technology
Pages: 134-140
Publication date: 2015
Peer-reviewed: Yes

Publication information
Volume: 140
ISSN (Print): 0927-0248
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.83 SJR 1.459 SNIP 1.532
Web of Science (2017): Impact factor 5.018
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.97 SJR 1.599 SNIP 1.71
Web of Science (2016): Impact factor 4.784
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.16 SJR 1.8 SNIP 1.851
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.87 SJR 2.19 SNIP 2.348
Web of Science (2014): Impact factor 5.337
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.58 SJR 2.179 SNIP 2.529
Web of Science (2013): Impact factor 5.03
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.25 SJR 2.441 SNIP 2.654
Web of Science (2012): Impact factor 4.63
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes