Angiotensinogen and HLA class II predict bevacizumab response in recurrent glioblastoma patients - DTU Orbit (01/04/2018)

Angiotensinogen and HLA class II predict bevacizumab response in recurrent glioblastoma patients

Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers for bevacizumab response in recurrent glioblastoma patients. Methods: The study included a total of 82 recurrent glioblastoma patients treated with bevacizumab combination therapy whom were both response and biomarker evaluable. Gene expression of tumor tissue was analyzed by using a customized NanoString platform covering 800 genes. Candidate gene predictors associated with response were analyzed by multivariate logistic and Cox regression analysis. Results: Two genes were independently associated with response: Low expression of angiotensinogen (2-fold decrease in AGT; OR = 2.44; 95% CI: 1.45-4.17; P = 0.0009) and high expression of a HLA class II gene (2-fold increase in HLA-DQA1; OR = 1.22; 95% CI: 1.01-1.47; P = 0.04). These two genes were included in a model that is able predict response to bevacizumab combination therapy in clinical practice. When stratified for a validated prognostic index, the predictive model for response was significantly associated with improved overall survival. Conclusion: Two genes (low angiotensinogen and high HLA-class II expression) were predictive for bevacizumab response and were included in a predictive model for response. This model can be used in clinical practice to identify patients who will benefit from bevacizumab combination therapy.

General information
State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, Rigshospitalet, Hvidovre Hospital, University of Copenhagen
Authors: Urup, T. (Ekstern), Michaelsen, S. R. (Ekstern), Olsen, L. R. (Intern), Toft, A. (Ekstern), Christensen, I. J. (Ekstern), Grunnet, K. (Ekstern), Winther, O. (Ekstern), Broholm, H. (Ekstern), Kosteljanetz, M. (Ekstern), Issazadeh-Navikas, S. (Ekstern), Poulsen, H. S. (Ekstern), Lassen, U. (Ekstern)
Number of pages: 9
Pages: 1160-1168
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Molecular Oncology
Volume: 10
Issue number: 8
ISSN (Print): 1574-7891
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.25 SJR 2.494 SNIP 1.16
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 2.84 SNIP 1.308 CiteScore 5.65
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.96 SNIP 1.346 CiteScore 5.3
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 3.54 SNIP 1.419 CiteScore 5.94
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): SJR 3.347 SNIP 1.494 CiteScore 5.59
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): SJR 2.45 SNIP 1.245 CiteScore 3.86
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 2.405 SNIP 0.93
Scopus rating (2009): SJR 0.943 SNIP 0.71
Scopus rating (2008): SJR 1.179 SNIP 0.403
Web of Science (2007): Indexed yes