A high efficient planar integrated magnetics (PIM) design approach for primary-parallel isolated boost converters is presented. All magnetic components in the converter including two input inductors and two transformers with primary-parallel and secondary-series windings are integrated into an E-I-E core geometry, reducing the total ferrite volume and core loss. The transformer windings are symmetrically distributed into the outer legs of E-cores and the inductor windings are wound on the center legs of E-cores with air gaps. Therefore, the inductor and the transformer can be operated independently. Due to the low reluctance path provided by the shared I-core, the two input inductors can be integrated independently, and also the two transformers can be partially coupled each other. Detailed characteristics of the integrated structure have been studied in this paper. AC losses in the windings and the leakage inductance of the transformer are kept low by interleaving the primary and secondary turns of the transformers substantially. Because of the combination of inductors and transformers, maximum output power capability of the fully integrated module needs to be investigated. Winding loss, core loss and switching loss of MOSFETs are analyzed in-depth in this work as well. To verify the validity of the design approach, a 2-kW prototype converter with two primary power stages is implemented for a fuel cell fed traction applications with 20-50 V input and 400-V output. An efficiency of 95.9% can be achieved during 1.5-kW nominal operating conditions. Experimental comparisons between the PIM module and three separated cases have illustrated the PIM module has advantages of lower footprint and higher efficiencies.

General information
State: Published
Organisations: Electronics, Department of Electrical Engineering
Contributors: Ouyang, Z., Sen, G., Thomsen, O. C., Andersen, M. A. E.
Pages: 494-508
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Industrial Electronics
Volume: 60
Issue number: 2
ISSN (Print): 0278-0046
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 9.07 SJR 2.192 SNIP 3.257
Web of Science (2017): Impact factor 7.05
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 9.25 SJR 2.289 SNIP 3.669
Web of Science (2016): Impact factor 7.168
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 9.47 SJR 2.476 SNIP 4.081
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 9.19 SJR 2.341 SNIP 4.647
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 9.14 SJR 2.21 SNIP 5.01
Web of Science (2013): Impact factor 6.5
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 8.27 SJR 2.075 SNIP 4.304
Web of Science (2012): Impact factor 5.165
Isi indexed (2012): Isi indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 7.72 SJR 1.954 SNIP 3.841
Web of Science (2011): Impact factor 5.16
Isi indexed (2011): Isi indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.679 SNIP 3.179
Web of Science (2010): Impact factor 3.481
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.722 SNIP 3.141
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.126 SNIP 3.57
Scopus rating (2007): SJR 2.029 SNIP 2.849
Scopus rating (2006): SJR 0.964 SNIP 2.586
Scopus rating (2005): SJR 1.815 SNIP 2.677
Scopus rating (2004): SJR 1.746 SNIP 2.778
Scopus rating (2003): SJR 2.125 SNIP 2.241
Scopus rating (2002): SJR 1.207 SNIP 1.641
Scopus rating (2001): SJR 1.685 SNIP 1.799
Scopus rating (2000): SJR 0.423 SNIP 1.626
Scopus rating (1999): SJR 0.541 SNIP 1.646
Original language: English
Keywords: Planar integrated magnetics (PIM), Dc-dc converter, Core loss, Isolated boost, Fuel cell, Inductor, Transformer and winding loss
Electronic versions:
prod11329077788206.06145649[1].pdf
DOIs:
10.1109/TIE.2012.2186777
Source: orbit
Source-ID: 318784
Research output: Research - peer-review › Journal article – Annual report year: 2012