Analysing improvements to on-street public transport systems: a mesoscopic model approach - DTU Orbit (08/12/2018)

Analysing improvements to on-street public transport systems: a mesoscopic model approach

Light rail transit and bus rapid transit have shown to be efficient and cost-effective in improving public transport systems in cities around the world. As these systems comprise various elements, which can be tailored to any given setting, e.g. pre-board fare-collection, holding strategies and other advanced public transport systems (APTS), the attractiveness of such systems depends heavily on their implementation. In the early planning stage it is advantageous to deploy simple and transparent models to evaluate possible ways of implementation. For this purpose, the present study develops a mesoscopic model which makes it possible to evaluate public transport operations in details, including dwell times, intelligent traffic signal timings and holding strategies while modelling impacts from other traffic using statistical distributional data thereby ensuring simplicity in use and fast computational times. This makes it appropriate for analysing the impacts of improvements to public transport operations, individually or in combination, in early planning stages. The paper presents a joint measure of reliability for such evaluations based on passengers’ perceived travel time by considering headway time regularity and running time variability, i.e. taking into account waiting time and in-vehicle time. The approach was applied on a case study by assessing the effects of implementing segregated infrastructure and APTS elements, individually and in combination. The results showed that the reliability of on-street public transport operations mainly depends on APTS elements, and especially holding strategies, whereas pure infrastructure improvements induced travel time reductions. The results further suggested that synergy effects can be obtained by planning on-street public transport coherently in terms of reduced travel times and increased reliability.

General information
State: Published
Organisations: Department of Management Engineering, Transport DTU, Transport Modelling, COWI AS
Contributors: Ingvardson, J. B., Kornerup Jensen, J., Nielsen, O. A.
Pages: 385-409
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Public Transport
Volume: 9
Issue number: 1-2
ISSN (Print): 1866-749X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.16 SJR 0.529 SNIP 0.66
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 1.8 SJR 0.893 SNIP 1.662
Scopus rating (2015): CiteScore 1.98 SJR 1.324 SNIP 1.599
Scopus rating (2014): CiteScore 1.26 SJR 0.88 SNIP 0.969
Scopus rating (2013): CiteScore 1.03 SJR 0.743 SNIP 0.859
Scopus rating (2012): CiteScore 0.96 SJR 0.971 SNIP 0.981
Scopus rating (2011): CiteScore 1.26 SJR 1.225 SNIP 1.867
Scopus rating (2010): SJR 0.517 SNIP 0.756
Original language: English
Electronic versions:
Manuscript_Mesoscopic_modelling_of_on_street_public_transport_Revision2_v5.pdf. Embargo ended: 14/02/2018
DOIs:
10.1007/s12469-016-0151-x
Research output: Research - peer-review → Journal article – Annual report year: 2017