An integrated rolling stock planning model for the Copenhagen suburban passenger railway

An integrated rolling stock planning model for the Copenhagen suburban passenger railway

A central issue for operators of passenger railways is providing sufficient number of seats for passengers while at the same time minimising operating costs. This is the task of rolling stock planning. Due to the large number of practical, railway specific requirements that a rolling stock plan has to take into account, rolling stock plans are often constructed in a step-by-step manner, taking some requirements into consideration in each step. This may make it difficult in the final step to produce a plan that is feasible with regard to all of the requirements and at the same time economically attractive. This paper proposes an integrated rolling stock planning model that simultaneously takes into account all practical requirements for rolling stock planning at DSB S-tog, the suburban passenger train operator of the City of Copenhagen. The model is then used to improve existing rolling stock plans using a hill climbing heuristic. Experiments show that the heuristic used in the integrated rolling stock planning model is able to produce feasible solutions within minutes of computation time starting from infeasible rolling stock plans. Furthermore, the heuristic is able to improve the economic attractiveness of typical rolling stock plans with an average of 2%.

General information

State: Published
Organisations: Department of Management Engineering, Management Science, DSB, IBM Research
Contributors: Thorlacius, P., Larsen, J., Laumanns, M.
Number of pages: 23
Pages: 240-262
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Journal of Rail Transport Planning & Management
Volume: 5
Issue number: 4
ISSN (Print): 2210-9706
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.69 SJR 0.996 SNIP 1.477
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.37 SJR 1.009 SNIP 0.878
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.87 SJR 0.86 SNIP 1.144
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.37 SJR 1.274 SNIP 1.663
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.47 SJR 1.03 SNIP 2
ISI indexed (2013): ISI indexed no
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.56 SJR 0.355 SNIP 2.151
ISI indexed (2012): ISI indexed no
Original language: English
Keywords: Data modelling, Heuristics, Integrated rolling stock planning, Passenger railway, Resource constrained shortest paths
DOIs:
10.1016/j.jrtpm.2015.11.001
Source: FindIt
Source-ID: 2289899596
Research output: Research - peer-review › Journal article – Annual report year: 2016