View graph of relations

To better understand the complex acoustic behaviour of lightweight building structures both experimental and theoretical approaches are necessary. Within the theoretical approach developing theoretical models is of great importance. The aim here is to further develop an existing method to predict the impact sound pressure level in a receiving room for a coupled floor structure where floor and ceiling are rigidly connected by beams. A theoretical model for predicting the impact sound level for a decoupled floor structure, which has no rigid mechanical connections between the floor and the ceiling, is developed. An analytical method has been implemented, where a spatial Fourier transform method as well as the Poisson’s sum formula is applied to model transformed plate displacements. Radiated sound power was calculated from these displacements and normalized sound pressure levels were calculated in one-third octave frequency bands. The predicted results from the model are compared with the results from the experiments on the decoupled floor-ceiling construction. The results gave agreements in line with comparisons regarding previous model. The effect of introducing beam-plate moment in the model is studied and is found to be dependent on frequency, showing significant improvement in predicting impact sound level at high frequency region.
Original languageEnglish
JournalActa Acustica united with Acustica
Publication date2011
Volume97
Pages254 - 265
ISSN1610-1928
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5478055