An exploratory study of alkali sulfate aerosol formation during biomass combustion - DTU Orbit (16/12/2018)

An exploratory study of alkali sulfate aerosol formation during biomass combustion

It is still in discussion to what extent alkali sulfate aerosols in biomass combustion are formed in the gas phase by a homogeneous mechanism or involve heterogeneous or catalyzed reactions. The present study investigates sulfate aerosol formation based on calculations with a detailed gas phase mechanism. The modeling predictions are compared to data from laboratory experiments and entrained flow reactor experiments available in the literature. The analysis support that alkali sulfate aerosols are formed from homogeneous nucleation following a series of steps occurring in the gas phase. The rate-limiting step may be the oxidation of sulfite to sulfate, rather than the oxidation of SO2 to SO3 proposed previously. Even though the proposed model is consistent with experimental observations, experiments in a rigorously homogeneous system are called for to test its validity.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre
Contributors: Løj, L. H., Frandsen, F., Livbjerg, H., Glarborg, P., Marshall, P.
Pages: 1591-1600
Publication date: 2008
Peer-reviewed: Yes

Publication information
Journal: Fuel
Volume: 87
Issue number: 8-9
ISSN (Print): 0016-2361
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.4 SJR 1.891 SNIP 2.127
Web of Science (2017): Impact factor 4.908
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.9 SJR 1.736 SNIP 2.207
Web of Science (2016): Impact factor 4.601
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.46 SJR 1.781 SNIP 2.123
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.14 SJR 1.634 SNIP 2.294
Web of Science (2014): Impact factor 3.52
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.31 SJR 1.762 SNIP 2.544
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.99 SJR 1.813 SNIP 2.425
Web of Science (2012): Impact factor 3.357
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.1 SJR 2.041 SNIP 2.423
Web of Science (2011): Impact factor 3.248