An Evaluation of EEG Scanner's Dependence on the Imaging Technique, Forward Model Computation Method, and Array Dimensionality - DTU Orbit (21/01/2019)

An Evaluation of EEG Scanner's Dependence on the Imaging Technique, Forward Model Computation Method, and Array Dimensionality

EEG source reconstruction involves solving an inverse problem that is highly ill-posed and dependent on a generally fixed forward propagation model. In this contribution we compare a low and high density EEG setup’s dependence on correct forward modeling. Specifically, we examine how different forward models affect the source estimates obtained using four inverse solvers Minimum-Norm, LORETA, Minimum-Variance Adaptive Beamformer, and Sparse Bayesian Learning.

General information
State: Published
Organisations: Cognitive Systems, Department of Informatics and Mathematical Modeling, Convex Imaging
Pages: 1538-1541
Publication date: 2012

Host publication information
Title of host publication: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Publisher: IEEE
ISBN (Print): 978-1-4244-4119-8
ISBN (Electronic): 978-1-4244-4120-4
Electronic versions:
Stahlhut2012_EMBC.pdf
DOIs:
10.1109/EMBC.2012.6346235

Bibliographical note
Copyright 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Research output: Research - peer-review › Article in proceedings – Annual report year: 2012