An Empirical Model for Carbon Recovery in a Rotating Belt Filter and Its Application in the Frame of Plantwide Evaluation - DTU Orbit (22/12/2018)

The rotating belt filter (RBF) is an emerging and enabling technology for carbon recovery and also an alternative to the primary clarifier (PC), sludge thickening and dewatering. A recent study indicates that the RBF has the potential to reduce capital cost, footprint and improve energy and nutrient recovery in comparison to a conventional PC. Moreover, it is also believed that the RBF can fractionate carbon (enrichment of cellulose, namely toilet paper) based on particulate size, more efficiently than a PC. It is, therefore, necessary to understand and quantify the uniqueness of the RBF performance to maximize plant-wide benefits when retrofitted in existing wastewater treatment plants (WWTPs). Thus, a rigorous plant-wide study is required to interpret the deeper influence of an RBF on the major downstream units (such as activated sludge tanks, sludge digester, etc.). This study emphasizes the development of a simplified empirical model for describing carbon recovery in an RBF and the impact of the RBF implementation on plant-wide evaluation.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, Trojan Technologies
Contributors: Behera, C. R., Daynouri-Pancino, F., Santoro, D., Gernaey, K., Sin, G.
Pages: 30-36
Publication date: 2017

Host publication information
Title of host publication: Frontiers International Conference on Wastewater Treatment and Modelling
Publisher: Springer
Editor: Mannina, G.
(Lecture Notes in Civil Engineering, Vol. 4).
DOI: 10.1007/978-3-319-58421-8_5
Research output: Research - peer-review › Article in proceedings – Annual report year: 2017