An axisymmetrical non-linear finite element model for induction heating in injection molding tools

Research output: Research - peer-reviewJournal article – Annual report year: 2016

View graph of relations

To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use with simulation codes not able to utilize a non-linear solver. (C) 2015 Elsevier B.V. All rights reserved.
Original languageEnglish
JournalFinite Elements in Analysis and Design
Volume110
Pages (from-to)1-10
Number of pages10
ISSN0168-874X
DOIs
StatePublished - 2016
CitationsWeb of Science® Times Cited: 4

    Research areas

  • Injection molding, Temperature dependent magnetic properties, Induction heating, Non-linear finite element, Axisymmetric
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 119867654