An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates

An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in *Bifidobacterium* and Correlates with Competitive Growth on These Substrates

The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (Big16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic *Bifidobacterium animalis* subsp. *lactis* Bl-04 binds -(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the -(1,6)-galactoside uptake profile of the bacterium. Structures of Big16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of Big16BP, which recognizes the non-reducing -(1,6)-diglycoside in its ligands. Big16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on -(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal *Bacteroides ovatus* was out-competed by *B. animalis* subsp. *lactis* Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the Big16BP. By comparison, *B. ovatus* monocultures grew very efficiently on this trisaccharide. These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant *Bacteroides* that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria.

General information

State: Published
Organisations: Department of Systems Biology, Enzyme and Protein Chemistry, Department of Chemistry, Department of Micro- and Nanotechnology, Colloids and Biological Interfaces, Lund University, University of Groningen
Contributors: Hansen, M. E., Fredslund, F., Andersen, J. M., Žagar, A. V., Henriksen, J. R., Andresen, T. L., Svensson, B., Slotboom, D. J., Abou Hachem, M.
Number of pages: 12
Pages: 20220-20231
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Biological Chemistry
Volume: 291
Issue number: 38
ISSN (Print): 0021-9258
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.04 SJR 2.672 SNIP 1.085
Web of Science (2017): Impact factor 4.01
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.17 SJR 2.825 SNIP 1.123
Web of Science (2016): Impact factor 4.125
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.4 SJR 3.126 SNIP 1.182
Web of Science (2015): Impact factor 4.258
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.5 SJR 3.258 SNIP 1.216
Web of Science (2014): Impact factor 4.573
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.87 SJR 3.402 SNIP 1.227
Web of Science (2013): Impact factor 4.6
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.97 SJR 3.396 SNIP 1.243
Web of Science (2012): Impact factor 4.651
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.97 SJR 3.544 SNIP 1.258
Web of Science (2011): Impact factor 4.773
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.998 SNIP 1.344
Web of Science (2010): Impact factor 5.328
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 4.375 SNIP 1.371
Web of Science (2008): Indexed yes
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 4.178 SNIP 1.352
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 4.376 SNIP 1.427
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 4.512 SNIP 1.42
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 4.815 SNIP 1.424
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 4.869 SNIP 1.518
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 6.065 SNIP 1.559
Web of Science (2000): Indexed yes
Original language: English
Keywords: ABC transporter, Carbohydrate-binding protein, Crystal structure, Probiotic, Surface plasmon resonance (SPR), Bifidobacterium, Gut microbiota, Isomalto-oligosaccharide, Oligosaccharide uptake, Raffinose
Electronic versions:
An_ATP_Binding_Cassette_Transporter_Mediates_the_Uptake_of_1_6_Linked_Dietary_Oligosaccharides_in_Bifidobacterium_and_Correlates_with_Competitive_Growth_on_These_Substrates.pdf. Embargo ended: 08/08/2017
DOIs: 10.1074/jbc.M116.746529

Bibliographical note
Publisher's version/PDF may be used after 12 months embargo.
Source: FindIt
Source-ID: 2307430866
Research output: Research - peer-review ; Journal article – Annual report year: 2016