An Asynchronous Time-Division-Multiplexed Network-on-Chip for Real-Time Systems -
DTU Orbit (13/01/2019)

An Asynchronous Time-Division-Multiplexed Network-on-Chip for Real-Time Systems
Multi-processor architectures using networks-on-chip (NOCs) for communication are becoming the standard approach in
the development of embedded systems and general purpose platforms. Typically, multi-processor platforms follow a
globally asynchronous locally synchronous (GALS) timing organization. This thesis focuses on the design of Argo, a NOC
targeted at hard real-time multi-processor platforms with a GALS timing organization.

To support real-time communication, NOCs establish end-to-end connections and provide latency and throughput
guarantees for these connections. Argo uses time division multiplexing (TDM) in combination with a static schedule to
implement virtual end-to-end circuits. TDM is a straightforward way to provide guarantees and to share the resources
efficiently, and it has an efficient hardware implementation. Argo supports a GALS system organization, and additionally it
explores more flexible timing within its structure, to address signal distribution issues, using a network of synchronous
routers.

NOCs consist of a switching structure of routers connected by links, with network interfaces (NIs) that connect the
processors to the switching structure. Argo uses a novel NI design that supports time-predictability, and asynchronous
routers that form a time-elastic network. The NI design integrates the DMA functionality and the TDM schedule, and uses
dual-ported local memories. The routers combine the router functionality and asynchronous elastic behavior. They also
use a gating mechanism to reduce the energy consumption. The combination of the NI design and the router design
supports the formation of end-to-end paths in the NOC, from the local memory of a sending core to the local memory of a
receiving core. These end-to-end paths do not require any dynamic arbitration, buffering, flow control, or clock
synchronization, in the routers or the NIs.

This thesis explores the implementation of the individual components of Argo, as well as several complete instances of the
Argo NOC. The implementations target both FPGA technology and 65 nm CMOS technology. It is shown that (i) the NI
design is scalable and four to five times smaller than previously published NIs for similar NOCs, (ii) the router design is
power efficient and two to three times smaller than equivalent router designs, and (iii) the overall Argo NOC is around four
times smaller than other TDM NOCs. Argo is an important part of the T-CREST platform and used in a number of
configurations.

The flexible timing organization of Argo combines asynchronous routers with mesochronous NIs, which are connected to
individually clocked cores, supporting a GALS system organization. The mesochronous NIs operate at the same
frequency, possibly with some skew, while the network of asynchronous routers absorbs this skew within certain limits.
The elasticity of the asynchronous network is explored, answering the question of how much skew the Argo NOC can
absorb. A qualitative analysis studies the parameters affecting the elasticity and its limits. A quantitative analysis models
the Argo behavior using timed-graph models and worstcase timing separation of events analysis to evaluate the elasticity
of Argo. The results show that the skew absorbed by the network of routers can be two or more cycles, depending on the
frequency applied at its endpoints, the NIs.

Overall this thesis presents the design and implementation of Argo, and the analysis of its elastic behavior. It shows that
Argo provides hard real-time guarantees in a straightforward way, it has an efficient implementation and it is time-elastic.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Embedded Systems Engineering
Contributors: Kasapaki, E., Sparsø, J., Schoeberl, M.
Number of pages: 150
Publication date: 2015

Publication information
Place of publication: Kgs. Lyngby
Publisher: Technical University of Denmark (DTU)
Original language: English
(DTU Compute PHD-2015; No. 361).
Electronic versions:
phd361_Kasapaki_E.pdf
Research output: Research › Ph.D. thesis – Annual report year: 2015