An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes

Personalization of cancer immunotherapies such as therapeutic vaccines and adoptive T-cell therapy may benefit from efficient identification and targeting of patient-specific neoepitopes. However, current neoepitope prediction methods based on sequencing and predictions of epitope processing and presentation result in a low rate of validation, suggesting that the determinants of peptide immunogenicity are not well understood. We gathered published data on human neoepitopes originating from single amino acid substitutions for which T cell reactivity had been experimentally tested, including both immunogenic and non-immunogenic neoepitopes. Out of 1,948 neopeptide-HLA (human leukocyte antigen) combinations from 13 publications, 53 were reported to elicit a T cell response. From these data, we found an enrichment for responses among peptides of length 9. Even though the peptides had been pre-selected based on presumed likelihood of being immunogenic, we found using NetMHCpan-4.0 that immunogenic neoepitopes were predicted to bind significantly more strongly to HLA compared to non-immunogenic peptides. Investigation of the HLA binding strength of the immunogenic peptides revealed that the vast majority (96%) shared very strong predicted binding to HLA and that the binding strength was comparable to that observed for pathogen-derived epitopes. Finally, we found that neopeptide dissimilarity to self is a predictor of immunogenicity in situations where neo- and normal peptides share comparable predicted binding strength. In conclusion, these results suggest new strategies for prioritization of mutated peptides, but new data will be needed to confirm their value.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Cancer Genomics, Immunoinformatics and Machine Learning, T-cells & Cancer, National Veterinary Institute, Universidad Nacional de San Martin
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Frontiers in Immunology
Volume: 8
Article number: 1566
ISSN (Print): 1664-3224
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.62 SJR 2.803 SNIP 1.484
Web of Science (2017): Impact factor 5.511
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 5.37 SJR 3.034 SNIP 1.476
Web of Science (2016): Impact factor 6.429
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 5.09 SJR 2.827 SNIP 1.277
Web of Science (2015): Impact factor 5.695
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 4.24 SJR 2.389 SNIP 1.057
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 1.908 SNIP 0.855
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 1.38 SJR 0.809 SNIP 0.193
ISI indexed (2012): ISI indexed no
Scopus rating (2011): SJR 0.121
Web of Science (2011): Indexed yes
Original language: English
Keywords: Neoepitopes, Neoantigen, Prediction, Immunogenicity, Mutations, MHC binding
Electronic versions:
fimmu_08_01566.pdf
DOIs:
10.3389/fimmu.2017.01566