An Adaptive Nonlinear Basal-Bolus Calculator for Patients With Type 1 Diabetes - DTU Orbit (20/03/2019)

An Adaptive Nonlinear Basal-Bolus Calculator for Patients With Type 1 Diabetes

Background: Bolus calculators help patients with type 1 diabetes to mitigate the effect of meals on their blood glucose by administering a large amount of insulin at mealtime. Intraindividual changes in patients physiology and nonlinearity in insulin-glucose dynamics pose a challenge to the accuracy of such calculators.

Method: We propose a method based on a continuous-discrete unscented Kalman filter to continuously track the postprandial glucose dynamics and the insulin sensitivity. We augment the Medtronic Virtual Patient (MVP) model to simulate noise-corrupted data from a continuous glucose monitor (CGM). The basal rate is determined by calculating the steady state of the model and is adjusted once a day before breakfast. The bolus size is determined by optimizing the postprandial glucose values based on an estimate of the insulin sensitivity and states, as well as the announced meal size. Following meal announcements, the meal compartment and the meal time constant are estimated, otherwise insulin sensitivity is estimated.

Results: We compare the performance of a conventional linear bolus calculator with the proposed bolus calculator. The proposed basal-bolus calculator significantly improves the time spent in glucose target (P < .01) compared to the conventional bolus calculator.

Conclusion: An adaptive nonlinear basal-bolus calculator can efficiently compensate for physiological changes. Further clinical studies will be needed to validate the results.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Scientific Computing, Dynamical Systems, Copenhagen University Hospital
Contributors: Boiroux, D., Aradóttir, T. B., Nørgaard, K., Poulsen, N. K., Madsen, H., Jørgensen, J. B.
Number of pages: 8
Pages: 29-36
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Diabetes Science and Technology
Volume: 11
Issue number: 1
ISSN (Print): 1932-2968
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.48 SJR 1.256 SNIP 1.109
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.14 SJR 0.875 SNIP 1.078
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.99 SJR 0.934 SNIP 0.971
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.84 SJR 0.882 SNIP 0.955
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.19 SJR 0.785 SNIP 0.921
ISI indexed (2013): ISI indexed no
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.33 SJR 0.711 SNIP 0.976
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.6 SJR 0.691 SNIP 0.904
ISI indexed (2011): ISI indexed no