Ampicillin has been shown to improve glucose tolerance in mice. We hypothesized that this effect is present only if treatment is initiated prior to weaning and that it disappears when treatment is terminated. High-fat fed C57BL/6NTac mice were divided into groups that received Ampicillin at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study termination, expressions of mRNA coding for tumor necrosis factor, serum amyloid A, and lactase were upregulated, while the expression of tumor necrosis factor (ligand) superfamily member 15 was downregulated in the ileum of Ampicillin-treated mice. Higher dendritic cell percentages were found systemically in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a "window" exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well as development of gut immunity and that this window may disappear after weaning.

General information
State: Published
Organisations: National Veterinary Institute, Section for Immunology and Vaccinology, Novo Nordisk AS, Copenhagen University Hospital, University of Copenhagen
Number of pages: 13
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Diabetes Research
Volume: 2013
Article number: 319321
ISSN (Print): 2314-6745
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.73 SJR 1.116 SNIP 0.919
Web of Science (2017): Impact factor 2.885
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 2.64 SJR 1.078 SNIP 0.925
Web of Science (2016): Impact factor 2.717
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.36 SJR 1.74 SNIP 1.724
Web of Science (2015): Impact factor 2.431
Scopus rating (2014): CiteScore 2.17 SJR 1.607 SNIP 1.519
Web of Science (2014): Impact factor 2.164
Scopus rating (2013): SJR 1.333 SNIP 1.164
Web of Science (2013): Impact factor
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): SJR 0.644 SNIP 0.678
Web of Science (2012): Impact factor 1.893
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): SJR 0.64 SNIP 0.649
Web of Science (2011): Impact factor 1.2
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.784 SNIP 2.858