Ammonia dynamics in magnesium ammine from DFT and neutron scattering

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

Energy storage in the form of ammonia bound in metal salts, so-called metal ammines, combines high energy density with the possibility of fast and reversible NH3 ab- and desorption kinetics. The mechanisms and processes involved in the NH3 kinetics are investigated by density functional theory (DFT) and quasielastic neutron scattering (QENS). The crystal structures of Mg(NH3)(n)Cl-2 with n = 6, 2, 1, which contains up to 9.19 wt % hydrogen and 0.115 kg hydrogen L-1, are first analyzed using an algorithm based on simulated annealing (SA), finding all the experimentally known structures and predicting the C2/m structure for the uncharacterized low temperature phase of Mg(NH3)(6)Cl-2. It is found from DFT that the rotation of ammonia in the hexammine complex (n = 6) requires an activation energy of 0.09 eV in the low temperature phase of Mg(NH3)(6)Cl-2 and 0.002-0.12 eV in the high temperature phases; effectively having free rotors as observed experimentally. The findings are supported by the QENS data, which identify C3 rotations of NH3 in the low temperature phase with an activation energy of 0.09 eV. The calculated diffusion rates were found to be 10(6)-10(7) Hz at the desorption temperatures for all n = 6, 2, 1 systems. DFT calculations involving bulk diffusion of NH3 correctly reproduces the trends observed in the experimental desorption enthalpies. In particular, for n = 6, 2, 1, there is a good agreement between activation barriers and experimental enthalpies. These results indicate that the desorption of NH3 is likely to be diffusion limited.
Original languageEnglish
JournalEnergy & Environmental Science
Publication date2010
Volume3
Issue4
Pages448-456
ISSN1754-5692
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 12

Keywords

  • Batteries and carbon-free energy storage, Materials and energy storage
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4972075