Amine-Functionalized Amino Acid-based Ionic Liquids as Efficient and High-Capacity Absorbents for CO2 - DTU Orbit (29/03/2019)

Amine-Functionalized Amino Acid-based Ionic Liquids as Efficient and High-Capacity Absorbents for CO2

Ionic liquids (ILs) comprised of ammonium cations and anions of naturally occurring amino acids containing an additional amine group (e.g., lysine, histidine, asparagine, and glutamine) were examined as high-capacity absorbents for CO2. An absorption capacity of 2.1 mol CO2 per mol of IL (3.5 mol CO2 per kg IL, 13.1 wt% CO2) was measured for [N66614][Lys] at ambient temperature and about 1 mol CO2 per mol of IL at 80°C (under 1 bar of CO2). This demonstrated that desorption is possible under CO2-rich conditions by temperature-swing absorption; three consecutive sorption cycles were performed with the IL. The mechanistic and kinetic study of the absorption process was further substantiated by NMR spectroscopy and in situ attenuated total reflectance FTIR for [N66614][Lys] and the homologous phosphonium-based IL [P66614][Lys]. This study revealed that carbamic acid was formed with CO2 in both ILs by chemisorption; however, the amino acid–carboxyl groups on the anion played an important—but different—catalytic role for the sorption kinetics in the two ILs. The origin of the cationic effect is speculated to be correlated with the strength of the ion interactions in the two ILs.

General information

State: Published
Organisations: Department of Chemistry, Centre for Catalysis and Sustainable Chemistry
Contributors: Shunmugavel, S., Kunov-Kruse, A. J., Fehrmann, R., Riisager, A.
Pages: 897-902
Publication date: 2014
Peer-reviewed: Yes

Publication information

Journal: ChemSusChem (Print)
Volume: 7
Issue number: 3
ISSN (Print): 1864-5631
Ratings:
 - BFI (2019): BFI-level 2
 - Web of Science (2019): Indexed yes
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Scopus rating (2017): CiteScore 6.86 SJR 2.538 SNIP 1.235
 - Web of Science (2017): Impact factor 7.411
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 6.7 SJR 2.505 SNIP 1.311
 - Web of Science (2016): Impact factor 7.226
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 7.33 SJR 2.53 SNIP 1.424
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 7.97 SJR 2.864 SNIP 1.663
 - Web of Science (2014): Impact factor 7.657
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 7.79 SJR 2.561 SNIP 1.46
 - Web of Science (2013): Impact factor 7.117
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - Scopus rating (2012): CiteScore 6.72 SJR 3.054 SNIP 1.553
 - Web of Science (2012): Impact factor 7.475
 - ISI indexed (2012): ISI indexed yes
 - Scopus rating (2011): CiteScore 5.53 SJR 2.759 SNIP 1.497
Web of Science (2011): Impact factor 6.827
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 1.959 SNIP 1.143
Web of Science (2010): Impact factor 6.325
Web of Science (2010): Indexed yes
Scopus rating (2009): SJR 0.979 SNIP 0.718
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.297 SNIP 0.508
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.281 SNIP 0.49
Scopus rating (2006): SJR 0.242 SNIP 0.37
Scopus rating (2005): SJR 0.195 SNIP 0.287
Scopus rating (2004): SJR 0.214 SNIP 0.272
Scopus rating (2003): SJR 0.276 SNIP 0.417
Scopus rating (2002): SJR 0.3 SNIP 0.584
Scopus rating (2001): SJR 0.29 SNIP 0.496
Scopus rating (2000): SJR 0.425 SNIP 0.571
Scopus rating (1999): SJR 0.5 SNIP 0.688
Original language: English
DOIs:
10.1002/cssc.201300691
Source: dtu
Source-ID: u::10725
Research output: Research - peer-review › Journal article – Annual report year: 2014