Amalgamation of interacting light beamlets in Kerr-type media - DTU Orbit (26/01/2019)

Amalgamation of interacting light beamlets in Kerr-type media
The interaction of optical filaments in bulk self-focusing media is investigated theoretically and numerically. The nature of this interaction is shown to vary with the incident individual powers and relative phases of the beamlets. By means of virial arguments supported by numerical results it is found that three distinct evolution regimes characterize two in-phase interacting filaments: (i) When each filament has a power below \(N_c/4 \), where \(N_c \) is the critical self-focusing threshold for a single wave, both filaments disperse along their propagation axis. (ii) When their respective powers lie between \(N_c/4 \) and \(N_c \), they fuse into a single central lobe that may self-focus until collapse, depending on their initial separation distance. The critical distance below which a central lobe forms and collapses is estimated analytically. (iii) When their incident powers both exceed \(N_c \), initially separated filaments individually self-focus without mutual interaction. In contrast to in-phase beamlets, two light cells with opposite phase are shown to never coalesce. The extension of the self-focusing dynamics to optical filaments in bulk media with anomalous group-velocity dispersion is discussed. (C) 1997 Optical Society of America.

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Contributors: Christiansen, P. L., Rasmussen, K., Berge, L., Schmidt, M. R., Rasmussen, J. J.
Pages: 2550-2561
Publication date: Oct 1997
Peer-reviewed: Yes

Publication information
Journal: Journal of the Optical Society of America B-optical Physics
Volume: 14
Issue number: 10
ISSN (Print): 0740-3224
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.97 SJR 0.859 SNIP 0.875
Web of Science (2017): Impact factor 2.048
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.81 SJR 0.85 SNIP 0.936
Web of Science (2016): Impact factor 1.843
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.78 SJR 0.963 SNIP 0.923
Web of Science (2015): Impact factor 1.731
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.09 SJR 1.167 SNIP 1.137
Web of Science (2014): Impact factor 1.97
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.33 SJR 1.348 SNIP 1.286
Web of Science (2013): Impact factor 1.806
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.2 SJR 1.522 SNIP 1.28
Web of Science (2012): Impact factor 2.21
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1