Alpha-particle velocity-space diagnostic in ITER - DTU Orbit (30/01/2019)

Alpha-particle velocity-space diagnostic in ITER

We discuss α-particle velocity-space diagnostic in ITER based on the planned collective Thomson scattering (CTS) and γ-ray spectrometry (GRS) systems as well as ASCOT simulations of the α-particle distribution function. GRS is sensitive to α-particles with energies MeV at all pitches p, and CTS for MeV and . The remaining velocity space is not observed. GRS and CTS view the plasma (almost) perpendicularly to the magnetic field. Hence we cannot determine the sign of the pitch of the α-particles and cannot distinguish co- and counter-going α-particles with the currently planned α-particle diagnostics. Therefore we can only infer the sign-insensitive 2D distribution function by velocity-space tomography for MeV. This is a serious limitation, since co- and counter-going α-particle populations are expected to have different birth rates and neoclassical transport as well as different anomalous transport due to interaction with modes such as Alfvén eigenmodes. We propose the installation of an oblique GRS system on ITER to allow us to diagnostically track such anisotropy effects and to infer the full, sign-sensitive for MeV. α-particles with MeV are diagnosed by CTS only, which does not allow velocity-space tomography on its own. Nevertheless, we show that measurements of the α-particle energy spectrum, which is an ITER measurement requirement, are now feasible for MeV using a velocity-space tomography formalism assuming isotropy in velocity space.

General information

State: Published
Organisations: Department of Physics, Plasma Physics and Fusion Energy, Department of Applied Mathematics and Computer Science, Scientific Computing, Center for Nuclear Technologies, Radiation Physics, University of Milan - Bicocca, ITER Cadarache, Max-Planck-Institut fur Plasmaphysik, Culham Science Centre, University of California at Irvine, Aalto University, Ioffe Institute, Consiglio Nazionale delle Ricerche
Number of pages: 16
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Nuclear Fusion
Volume: 58
Issue number: 9
Article number: 096019
ISSN (Print): 0029-5515
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.13 SJR 0.759 SNIP 1.424
Web of Science (2017): Impact factor 4.057
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.62 SJR 1.284 SNIP 1.416
Web of Science (2016): Impact factor 3.307
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.88 SJR 1.51 SNIP 1.62
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.2 SJR 1.907 SNIP 1.667
Web of Science (2014): Impact factor 3.062
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.83 SJR 1.366 SNIP 1.516
Web of Science (2013): Impact factor 3.243
ISI indexed (2013): ISI indexed yes