All-Optical Switching Improvement Using Photonic-Crystal Fano Structures

All-Optical Switching Improvement Using Photonic-Crystal Fano Structures
We investigate the intensity and phase response of optical switches based on a photonic crystal waveguide coupled to a nanocavity. In particular, we compare the performances of switches with traditional Lorentzian transmission spectrum to switches displaying an asymmetric Fano shape, as obtained by incorporating a partially transmitting element in the waveguide. Compared to traditional Lorentzian structures, the Fano structure shows improved switching contrast and speed without adding any extra phase modulation, corresponding to a much lower chirp parameter. Using a simple and ultracompact InP photonic-crystal Fano structure with broken mirror symmetry, we experimentally demonstrate 20-Gb/s all-optical switching with low-energy consumption.

General information
State: Published
Organisations: Department of Photonics Engineering, Quantum and Laser Photonics, High-Speed Optical Communication, Department of Micro- and Nanotechnology, Centre of Excellence for Silicon Photonics for Optical Communications, Nanophotonic Devices
Contributors: Yu, Y., Xue, W., Hu, H., Oxenløwe, L. K., Yvind, K., Mørk, J.
Number of pages: 9
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: IEEE Photonics Journal
Volume: 8
Issue number: 2
Article number: 0600108
ISSN (Print): 1943-0655
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.82 SJR 0.893 SNIP 1.128
Web of Science (2017): Impact factor 2.627
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.27 SJR 0.858 SNIP 1.115
Web of Science (2016): Impact factor 2.291
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.41 SJR 1.137 SNIP 1.169
Web of Science (2015): Impact factor 2.177
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.47 SJR 1.446 SNIP 1.332
Web of Science (2014): Impact factor 2.209
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.83 SJR 1.544 SNIP 1.426
Web of Science (2013): Impact factor 2.33
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 2.69 SJR 1.806 SNIP 1.556
Web of Science (2012): Impact factor 2.356
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 2.93 SJR 1.544 SNIP 2.478
Web of Science (2011): Impact factor 2.32