Air distribution in a multi-occupant room with mixing or displacement ventilation with or without floor or ceiling heating - DTU Orbit (27/12/2018)

Air distribution in a multi-occupant room with mixing or displacement ventilation with or without floor or ceiling heating

This study performed a comparative analysis of the air distribution in a multi-occupant room with mixing or displacement ventilation and the effect of adding floor or ceiling heating to each of them. The vertical distribution of indoor air temperature and velocity in the occupied zone and the horizontal distribution of indoor containment concentration in the breathing zone were measured for all six systems with a supply air temperature of 19.0°C and an air change rate of 4.2 h⁻¹. The results showed that the mean vertical air temperature difference in the occupied zone varied from 0.1°C to 0.6°C; the mean local turbulence intensity varied from 12.0% to 14.1% with mixing ventilation with or without floor or ceiling heating, and the corresponding values were 1.5°C to 2.5°C and 7.3% to 9.8% with displacement ventilation with or without floor or ceiling heating. Mean air distribution effectiveness varied from 0.93 to 1.0 for mixing ventilation and from 1.06 to 1.14 for displacement ventilation with or without floor or ceiling heating. The results are relevant to the design and control of mixing and displacement ventilation with or without floor or ceiling heating in a multi-occupant room.

General information
State: Published
Organisations: Section for Indoor Environment, Department of Civil Engineering, Section for Indoor Climate and Building Physics, Xi'an Jiaotong University
Contributors: Wu, X., Fang, L., Olesen, B. W., Zhao, J., Wang, F.
Number of pages: 8
Pages: 1109-1116
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Science and Technology for the Built Environment
Volume: 21
Issue number: 8
ISSN (Print): 2374-474x
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 1.05
Web of Science (2017): Impact factor 1.183
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 1.01
Web of Science (2016): Impact factor 0.88
Web of Science (2016): Indexed yes
Scopus rating (2015): SJR 0.644 SNIP 0.888
Web of Science (2015): Impact factor
Web of Science (2015): Indexed yes
Scopus rating (2014): SJR 0.578 SNIP 0.846
Web of Science (2014): Indexed yes
Scopus rating (2013): SJR 0.618 SNIP 0.89
Web of Science (2013): Indexed yes
Scopus rating (2012): SJR 0.587 SNIP 1.109
Web of Science (2012): Indexed yes
Scopus rating (2011): SJR 0.541 SNIP 0.74
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 1.027 SNIP 0.955
Web of Science (2010): Indexed yes
Scopus rating (2009): SJR 1.767 SNIP 1.187
Web of Science (2009): Indexed yes
Scopus rating (2008): SJR 0.866 SNIP 0.903
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.804 SNIP 1.625
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.907 SNIP 1.302
Web of Science (2006): Indexed yes