Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

Agglomeration is one of the operational problems in fluidized bed combustion of biomass, which is caused by interaction between bed materials (e.g. silica sand) and the biomass ash with a high content of potassium species. However, the contribution of different potassium species to agglomeration is not fully understood yet. In the present work, the reaction between K_2CO_3 and silica sand has been studied extensively by thermogravimetric analysis. The reacted samples were analyzed by SEM-EDX to reveal the reaction mechanism. The results indicated that the reaction occurs in a solid-solid phase already at temperatures around 700°C. The reaction rate increases with increasing temperature, but decreases with an increase of CO_2 partial pressure. Using smaller particle size and well mixed solid reactants results in an increased reaction rate. It is observed that the reaction initiates in the contact area between K_2CO_3 and silica sand, forming a thin product layer. The layer acted as a reactive media further reacting with K_2CO_3 and silica sand. The results provide a basis for understanding of potassium induced agglomeration process in fluidized bed biomass combustion.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, The Hempel Foundation Coatings Science and Technology Centre (CoaST)
Contributors: Anicic, B., Lin, W., Dam-Johansen, K., Wu, H.
Pages: 182-190
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Fuel Processing Technology
Volume: 173
ISSN (Print): 0378-3820
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.46 SJR 1.453 SNIP 1.729
Web of Science (2017): Impact factor 3.956
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.15 SJR 1.397 SNIP 1.729
Web of Science (2016): Impact factor 3.752
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.09 SJR 1.501 SNIP 1.817
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.96 SJR 1.612 SNIP 2.167
Web of Science (2014): Impact factor 3.352
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.83 SJR 1.61 SNIP 2.121
Web of Science (2013): Impact factor 3.019
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.77 SJR 1.644 SNIP 2.055
Web of Science (2012): Impact factor 2.816
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.38 SJR 1.544 SNIP 1.781
Web of Science (2011): Impact factor 2.945
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.599 SNIP 1.884
Web of Science (2010): Impact factor 2.781
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.531 SNIP 1.851
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.451 SNIP 1.756
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.218 SNIP 1.72
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.975 SNIP 1.454
Scopus rating (2005): SJR 0.748 SNIP 1.152
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.807 SNIP 1.239
Scopus rating (2003): SJR 0.907 SNIP 1.151
Scopus rating (2002): SJR 0.689 SNIP 1.106
Scopus rating (2001): SJR 0.568 SNIP 0.971
Scopus rating (2000): SJR 1.23 SNIP 0.999
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.169 SNIP 1.074
Original language: English
Keywords: Fluidized bed combustion, Biomass, Agglomeration, Reaction mechanism, Potassium carbonate, Silica sand
DOIs:
10.1016/j.fuproc.2017.10.005
Source: FindIt
Source-ID: 2396393856
Research output: Research - peer-review Journal article – Annual report year: 2018