Affibody scaffolds improve sesquiterpene production in Saccharomyces cerevisiae - DTU Orbit (16/01/2019)

Affibody scaffolds improve sesquiterpene production in *Saccharomyces cerevisiae*

Enzyme fusions have been widely used as a tool in metabolic engineering to increase pathway efficiency by reducing substrate loss and accumulation of toxic intermediates. Alternatively, enzymes can be co-localized through attachment to a synthetic scaffold via non-covalent interactions. Here we describe the use of affibodies for enzyme tagging and scaffolding. The scaffolding is based on the recognition of affibodies to their anti-idiotypic partners in vivo, and was first employed for co-localization of farnesyl diphosphate synthase and farnesene synthase in *S. cerevisiae*. Different parameters were modulated to improve the system, and the enzyme:scaffold ratio was most critical for its functionality. Ultimately, the yield of farnesene on glucose $Y_{S_{Far}}$ could be improved by 135% in fed-batch cultivations using a 2-site affibody scaffold. The scaffolding strategy was then extended to a three-enzyme polyhydroxybutyrate (PHB) pathway, heterologously expressed in *E. coli*. Within a narrow range of enzyme and scaffold induction, the affibody tagging and scaffolding increased PHB production 7-fold. This work demonstrates how the versatile affibody can be used for metabolic engineering purposes.

General information

State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Cell Factories, Chalmers University of Technology, Royal Institute of Technology
Contributors: Tippmann, S., Anfelt, J., David, F., Rand, J. M., Siewers, V., Uhlén, M., Nielsen, J., Hudson, E. P.
Number of pages: 10
Pages: 19-28
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: ACS Synthetic Biology
Volume: 6
Issue number: 1
ISSN (Print): 2161-5063

Ratings:
Web of Science (2019): Indexed yes
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 4.86 SJR 2.625 SNIP 1.107
Web of Science (2017): Impact factor 5.316
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 4.7 SJR 2.793 SNIP 1.05
Web of Science (2016): Impact factor 5.382
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 4.41 SJR 2.308 SNIP 1.056
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.84 SJR 3.809 SNIP 1.154
Web of Science (2014): Impact factor 4.978
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.42 SJR 1.84 SNIP 0.854
Web of Science (2013): Impact factor 3.951
ISI indexed (2013): ISI indexed yes
Web of Science (2012): Impact factor
ISI indexed (2012): ISI indexed no

Original language: English
Keywords: Affibodies, Biofuels, Isoprenoids, Metabolic engineering, PHB, Yeast
DOIs:
10.1021/acssynbio.6b00109
Source: FindIt
Source-ID: 2342173233
Research output: Research - peer-review > Letter – Annual report year: 2016