Advanced microtechnologies for detection of chromosome abnormalities by fluorescent in situ hybridization.

Cytogenetic and molecular cytogenetic analyses, which aim to detect chromosome abnormalities, are routinely performed in cytogenetic laboratories all over the world. Traditional cytogenetic studies are performed by analyzing the banding pattern of chromosomes, and are complemented by molecular cytogenetic techniques such as fluorescent in situ hybridization (FISH). To improve FISH application in cytogenetic analysis the issues with long experimental time, high volumes of expensive reagents and requirement for trained technicians need to be addressed. The protocol has recently evolved towards on chip detection of chromosome abnormalities with the development of microsystems for FISH analysis. The challenges addressed by the developed microsystems are mainly the automation of the assay performance, reduction in probe volume, as well as reduction of assay time. The recent focus on the development of automated systems for performing FISH on chip is summarized in this review.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Kennedy Center, University of Copenhagen
Pages: 453-460
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Biomedical Microdevices
Volume: 14
Issue number: 3
ISSN (Print): 1387-2176
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.07 SJR 0.538 SNIP 0.639
Web of Science (2017): Impact factor 2.077
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.29 SJR 0.606 SNIP 0.743
Web of Science (2016): Impact factor 2.062
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.68 SJR 0.768 SNIP 0.903
Web of Science (2015): Impact factor 2.227
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.98 SJR 0.961 SNIP 1.158
Web of Science (2014): Impact factor 2.877
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.01 SJR 0.882 SNIP 0.99
Web of Science (2013): Impact factor 2.765
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.12 SJR 0.991 SNIP 1.098
Web of Science (2012): Impact factor 2.718
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.45 SJR 1.151 SNIP 1.107
Web of Science (2011): Impact factor 3.032
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.284 SNIP 1.232
Web of Science (2010): Impact factor 3.386
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.14 SNIP 1.273
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.118 SNIP 0.803
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.18 SNIP 1.117
Scopus rating (2006): SJR 1.035 SNIP 1.101
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.223 SNIP 1.161
Scopus rating (2004): SJR 1.045 SNIP 1.322
Scopus rating (2003): SJR 0.698 SNIP 0.839
Scopus rating (2002): SJR 0.873 SNIP 0.929
Scopus rating (2001): SJR 0.571 SNIP 1.077
Scopus rating (2000): SJR 0.082 SNIP 0.76
Scopus rating (1999): SJR 0.303 SNIP 0.129
Original language: English
Keywords: Fluorescent in situ hybridization, FISH on chip, Microsystems, Cytogenetic analysis
DOIs:
10.1007/s10544-011-9622-7
Source: dtu
Source-ID: n:oai:DTIC-ART:pubmed/364830413::16376
Research output: Research - peer-review › Journal article – Annual report year: 2012