Administration of two probiotic strains during early childhood does not affect the endogenous gut microbiota composition despite probiotic proliferation - DTU Orbit (09/12/2018)

Administration of two probiotic strains during early childhood does not affect the endogenous gut microbiota composition despite probiotic proliferation

Probiotics are increasingly applied to prevent and treat a range of infectious, immune related and gastrointestinal diseases. Despite this, the mechanisms behind the putative effects of probiotics are poorly understood. One of the suggested modes of probiotic action is modulation of the endogenous gut microbiota, however probiotic intervention studies in adults have failed to show significant effects on gut microbiota composition. The gut microbiota of young children is known to be unstable and more responsive to external factors than that of adults. Therefore, potential effects of probiotic intervention on gut microbiota may be easier detectable in early life. We thus investigated the effects of a 6 month placebo-controlled probiotic intervention with Bifidobacterium animalis subsp. lactis (BB-12®) and Lactobacillus rhamnosus (LGG®) on gut microbiota composition and diversity in more than 200 Danish infants (N = 290 enrolled; N = 201 all samples analyzed), as assessed by 16S rRNA amplicon sequencing. Further, we evaluated probiotic presence and proliferation by use of specific quantitative polymerase chain reaction (qPCR). Probiotic administration did not significantly alter gut microbiota community structure or diversity as compared to placebo. The probiotic strains were detected in 91.3% of the fecal samples from children receiving probiotics and in 1% of the placebo treated children. Baseline gut microbiota was not found to predict the ability of probiotics to establish in the gut after the 6 month intervention. Within the probiotics group, proliferation of the strains LGG® and BB-12® in the gut was detected in 44.7% and 83.5% of the participants, respectively. A sub-analysis of the gut microbiota including only individuals with detected growth of the probiotics LGG® or BB-12® and comparing these to placebo revealed no differences in community structure or diversity. Six months of probiotic administration during early life did not change gut microbiota community structure or diversity, despite active proliferation of the administered probiotic strains. Therefore, alteration of the healthy infant gut microbiota is not likely to be a prominent mechanism by which these specific probiotics works to exert beneficial effects on host health. NCT02180581 . Registered 30 June 2014.

General information

State: Published

Organisations: National Food Institute, Research Group for Gut Microbiology and Immunology, Copenhagen Center for Health Technology, University of Copenhagen

Number of pages: 9

Publication date: 2017

Peer-reviewed: Yes

Publication information

Journal: B M C Microbiology

Volume: 17

Issue number: 1

Article number: 175

ISSN (Print): 1471-2180

Ratings:

BFI (2018): BFI-level 1

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 1

Scopus rating (2017): CiteScore 2.95 SJR 1.242 SNIP 0.953

Web of Science (2017): Impact factor 2.829

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 2.82 SJR 1.282 SNIP 0.993

Web of Science (2016): Impact factor 2.644

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 1

Scopus rating (2015): CiteScore 2.93 SJR 1.42 SNIP 0.994

Web of Science (2015): Impact factor 2.581

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1

Scopus rating (2014): CiteScore 2.95 SJR 1.519 SNIP 1.069

Web of Science (2014): Impact factor 2.729

Web of Science (2014): Indexed yes