Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks - DTU Orbit (09/12/2018)

Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks

Energy Harvesting - Wireless Sensor Networks (EH-WSNs) constitute systems of networked sensing nodes that are capable of extracting energy from the environment and that use the harvested energy to operate in a sustainable state. Sustainability, seen as design goal, has a significant impact on the design of the security protocols for such networks, as the nodes have to adapt and optimize their behaviour according to the available energy. Traditional key management schemes do not take energy into account, making them not suitable for EH-WSNs. In this paper we propose a new multipath key reinforcement scheme specifically designed for EH-WSNs. The proposed scheme allows each node to take into consideration and adapt to the amount of energy available in the system. In particular, we present two approaches, one static and one fully dynamic, and we discuss some experimental results.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Embedded Systems Engineering
Contributors: Di Mauro, A., Dragoni, N.
Pages: 48–55
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Procedia Computer Science
Volume: 63
ISSN (Print): 1877-0509
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.03 SJR 0.258 SNIP 0.732
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.88 SJR 0.259 SNIP 0.692
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.85 SJR 0.266 SNIP 0.772
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.67 SJR 0.249 SNIP 0.725
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.64 SJR 0.236 SNIP 0.594
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.63 SJR 0.505 SNIP 1.031
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 0.55 SJR 0.176 SNIP 0.671
ISI indexed (2011): ISI indexed no
Original language: English
Electronic versions:
Adaptive_Multipath_Key.pdf
DOIs:
10.1016/j.procs.2015.08.311
Research output: Research - peer-review › Conference article – Annual report year: 2015