Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories

Inhalation is the main pathway of ZnO exposure in the occupational environment but only few studies have addressed toxic effects after pulmonary exposure to ZnO nanoparticles (NP). Here we present results from three studies of pulmonary exposure and toxicity of ZnO NP in mice. The studies were prematurely terminated because interim results unexpectedly showed severe pulmonary toxicity. High bolus doses of ZnO NP (25 up to 100µg; ≥1.4mg/kg) were clearly associated with a dose dependent mortality in the mice. Lower doses (≥6µg; ≥0.3mg/kg) elicited acute toxicity in terms of reduced weight gain, desquamation of epithelial cells with concomitantly increased barrier permeability of the alveolar/blood as well as DNA damage. Oxidative stress was shown via a strong increase in lipid peroxidation and reduced glutathione in the pulmonary tissue. Two months post-exposure revealed no obvious toxicity for 12.5 and 25µg on a range of parameters. However, mice that survived a high dose (50µg; 2.7mg/kg) had an increased pulmonary collagen accumulation (fibrosis) at a similar level as a high bolus dose of crystalline silica. The recovery from these toxicological effects appeared dose-dependent. The results indicate that alveolar deposition of ZnO NP may cause significant adverse health effects.

General information

State: Published
Organisations: National Food Institute, Division of Risk Assessment and Nutrition , National Research Centre for the Working Environment, Helmholtz Zentrum München, University of Warmia and Mazury in Olsztyn, University of Copenhagen, Missouri University of Science and Technology, Universite Catholique de Louvain
Pages: 84-95
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Food and Chemical Toxicology
Volume: 85
ISSN (Print): 0278-6915
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.99 SJR 1.144 SNIP 1.427
Web of Science (2017): Impact factor 3.977
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.96 SJR 1.351 SNIP 1.58
Web of Science (2016): Impact factor 3.778
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.44 SJR 1.202 SNIP 1.415
Web of Science (2015): Impact factor 3.584
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.12 SJR 1.038 SNIP 1.369
Web of Science (2014): Impact factor 2.895
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.26 SJR 1.02 SNIP 1.506
Web of Science (2013): Impact factor 2.61
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1