Active tilting-pad journal bearings supporting flexible rotors: Part II–The model-based feedback-controlled lubrication

This part II of a twofold paper series deals with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical and experimental analyses are presented with focus on the reduction of rotor lateral vibration. This part is devoted to synthesising model-based LQG optimal controllers (LQR regulator + Kalman Filter) for the feedback-controlled lubrication and is based upon the mathematical model of the rotor-bearing system derived in part I. Results show further suppression of resonant vibrations when using the feedback-controlled or active lubrication, overweighting the reduction already achieved with hybrid lubrication, thus improving the whole machine dynamic performance.

General information
State: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Contributors: Salazar, J. A. G., Santos, I.
Pages: 106-115
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Tribology International
Volume: 107
ISSN (Print): 0301-679X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.55 SJR 1.52 SNIP 2.013
Web of Science (2017): Impact factor 3.246
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.16 SJR 1.386 SNIP 2.078
Web of Science (2016): Impact factor 2.903
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.61 SJR 1.421 SNIP 2.067
Web of Science (2015): Impact factor 2.259
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.44 SJR 1.564 SNIP 2.454
Web of Science (2014): Impact factor 1.936
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.51 SJR 1.459 SNIP 2.727
Web of Science (2013): Impact factor 2.124
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.96 SJR 1.405 SNIP 2.294
Web of Science (2012): Impact factor 1.536
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.89 SJR 1.244 SNIP 2.241
Web of Science (2011): Impact factor 1.553
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes