Active Control of Wind Turbines Through Varying Blade Tip Sweep

In this research work an introduction to the concept of an actively controlled horizontal axis wind turbine through varying blade tip sweep, is presented. The concept refers to variable tip swept rotor blades, that have the ability to pivot collectively aft, about an axis located at the blade tips. Quantities to be controlled are power production and blade loads. The investigation is carried out with a modified Blade Element Momentum (BEM) model that takes into account variable tip swept rotor blades and the modifications are based on results from a lifting line theory based model. The simulations refer to the 5MW NREL reference wind turbine that incorporates a suitable controller and preliminary results show beneficial behaviour in all of the investigated areas.

General information
State: Published
Organisations: Department of Wind Energy, Aerodynamic design, University of Thessaly
Contributors: Boulamatsis, A. M., Barlas, T. K., Stapountzis, H.
Pages: 25-36
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Renewable Energy
Volume: 131
ISSN (Print): 0960-1481
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.38 SJR 1.847 SNIP 2.008
Web of Science (2017): Impact factor 4.9
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.83 SJR 1.661 SNIP 2.05
Web of Science (2016): Impact factor 4.357
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.51 SJR 1.767 SNIP 2.085
Web of Science (2015): Impact factor 3.404
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.51 SJR 1.925 SNIP 2.621
Web of Science (2014): Impact factor 3.476
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.63 SJR 1.989 SNIP 2.719
Web of Science (2013): Impact factor 3.361
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.97 SJR 1.787 SNIP 2.699
Web of Science (2012): Impact factor 2.989
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.9 SJR 1.634 SNIP 2.349
Web of Science (2011): Impact factor 2.978