Active and Passive Immunization Against Staphylococcus aureus Periprosthetic Osteomyelitis in Rats - DTU Orbit (30/04/2019)

Active and Passive Immunization Against Staphylococcus aureus Periprosthetic Osteomyelitis in Rats

Background/Aim: Staphylococcus aureus infection associated with orthopedic implants cannot always be controlled. We used a knee prosthesis model with implant-related osteomyelitis in rats to explore induction of an effective immune response with active and passive immunization. Materials and Methods: Fifty-two Sprague-Dawley rats were divided into active (N=28) and passive immunization groups (N=24). A bacterial inoculum of 10(3) S. aureus MN8 was injected into the tibia and the femur marrow before insertion of a non-constrained knee prosthesis in each rat. The active-immunization group received a synthetic oligosaccharide of polysaccharide poly-N-acetylglucosamine (PNAG), 9G1cNH(2) and the passive-immunization group received immunization with immunoglobulin from rabbits infected with S. aureus.

Results/Conclusion: Active immunization against PNAG significantly reduced the consequences of osteomyelitis infection from PNAG-producing intercellular adhesion (ica(+)) but not ica(-) S. aureus. Passive immunization resulted in better clinical assessments in animals challenged with either ica(+) or icaS. aureus, suggesting a lack of specificity in this antiserum.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Infection Microbiology, University Hospital Herlev, University of Copenhagen, Harvard Medical School
Pages: 45-50
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: In Vivo
Volume: 31
Issue number: 1
ISSN (Print): 0258-851X
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.16 SJR 0.409 SNIP 0.478
Web of Science (2017): Impact factor 1.116
Web of Science (2017): Indexed yes
Original language: English
Keywords: Osteomyelitis, Implant-related infection Staphylococcus aureus, Immunization, Vaccine, Ica+ strain, Ica− strain
Electronic versions:
in_vivo_31_45.pdf
DOIs:
10.21873/invivo.11023

Bibliographical note
This article is freely accessible online.
Source: FindIt
Source-ID: 2351346659
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review