Acrylamide generation in pre-treated potato chips - DTU Orbit (24/12/2018)

Acrylamide generation in pre-treated potato chips

Acrylamide formation in potato slices fried at two different temperatures (170 and 190 degrees C) was investigated under different pre-processing conditions. Potato slices (Saturna variety, diameter: 37 mm, width: 2.2 mm) were either fried at 170 degrees C per 5 min or 190 degrees C per 3.5 min to reach a final moisture content of 1.8 g water/100g (wet basis). Prior to frying, potato slices were treated in one of the following ways: (i) Raw slices without any pre-treatment were considered as the control; (ii) Blanching: which was accomplished in 2 temperature-time combinations: 60 degrees C for 30 min and 90 degrees C for 5 min; (iii) Slices blanched treated such as in (ii) were then dried at 60 degrees C until a final moisture content of 60 g water/100 g (wet basis); (iv) Slices blanched such as in (ii) were then impregnated in a 3 g/100 g of NaCl solution for 5 min at 25 degrees C. Acrylamide content in potato chips was determined after frying at 170 or 190 degrees C. Frying at 190 degrees C increased by almost 130 percent the acrylamide content of all the pre-treated samples (average value) fried at 170 degrees C. Soaking of blanched potato slices in the 3 g/100 g of NaCl solution per 5 min at 25 degrees C, reduces acrylamide formation in potato chips by 11 percent after frying at 170 degrees C. However, when the slices are blanched directly in the 3 g/100g of NaCl solution at 60 degrees C for 30 min, their acrylamide formation increased surprisingly by similar to 90 percent when frying at 170 degrees C.

General information

State: Published
Organisations: Division of Food Chemistry, National Food Institute
Contributors: Pedreschi, F., Kaack, K., Granby, K.
Pages: 4-7
Publication date: 2008
Peer-reviewed: No

Publication information

Journal: Agro Food Industry Hi-Tech
Volume: 19
Issue number: 1
ISSN (Print): 1722-6996
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.29 SJR 0.159 SNIP 0.174
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.33 SJR 0.203 SNIP 0.151
Web of Science (2016): Impact factor 0.299
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.24 SJR 0.167 SNIP 0.208
Web of Science (2015): Impact factor 0.202
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.22 SJR 0.157 SNIP 0.162
Web of Science (2014): Impact factor 0.205
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.28 SJR 0.177 SNIP 0.103
Web of Science (2013): Impact factor 0.294
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.19 SJR 0.158 SNIP 0.094
Web of Science (2012): Impact factor 0.234
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.21 SJR 0.167 SNIP 0.138
Web of Science (2011): Impact factor 0.225
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.147 SNIP 0.092
Web of Science (2010): Impact factor 0.238
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.159 SNIP 0.09
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.133 SNIP 0.084
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.124 SNIP 0.106
Scopus rating (2006): SJR 0.124 SNIP 0.044
Scopus rating (2005): SJR 0.124 SNIP 0.101
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.124 SNIP 0.157
Scopus rating (2003): SJR 0.141 SNIP 0.179
Scopus rating (2002): SJR 0.131 SNIP 0.159
Scopus rating (2001): SJR 0.138 SNIP 0.184
Scopus rating (2000): SJR 0.208 SNIP 0.429
Scopus rating (1999): SJR 0.202 SNIP 0.409
Original language: English
Source: orbit
Source-ID: 232925
Research output: Research › Journal article – Annual report year: 2008