Acoustofluidics 1: Governing equations in microfluidics - DTU Orbit (04/03/2019)

Acoustofluidics 1: Governing equations in microfluidics

Governing equations for microfluidics and basic flow solutions are presented. Equivalent circuit modeling for determining flow rates in microfluidic networks is introduced.

General information

State: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Bruus, H.
Pages: 3742-3751
Publication date: 2011
Peer-reviewed: Yes

Publication information

Journal: Lab on a Chip
Volume: 11
Issue number: 22
ISSN (Print): 1473-0197
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 6.05 SJR 2.158 SNIP 1.586
Web of Science (2017): Impact factor 5.995
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.98 SJR 2.162 SNIP 1.569
Web of Science (2016): Impact factor 6.045
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.74 SJR 2.239 SNIP 1.721
Web of Science (2015): Impact factor 5.586
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 5.6 SJR 2.555 SNIP 1.797
Web of Science (2014): Impact factor 6.115
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.9 SJR 2.397 SNIP 1.693
Web of Science (2013): Impact factor 5.748
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.35 SJR 2.405 SNIP 1.731
Web of Science (2012): Impact factor 5.697
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.76 SJR 2.54 SNIP 1.788
Web of Science (2011): Impact factor 5.67
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.718 SNIP 1.876