Acoustical topology optimization for Zwicker's loudness model - Application to noise barriers

Publication: Research - peer-reviewJournal article – Annual report year: 2012

  • Author: Kook, Junghwan, Korea, Republic of

    School of Mechatronics, Gwangju Institute of Science and Technology, Korea, Republic of

  • Author: Koo, Kunmo, Korea, Republic of

    School of Mechatronics, Gwangju Institute of Science and Technology, Korea, Republic of

  • Author: Hyun, Jaeyub, Korea, Republic of

    School of Mechatronics, Gwangju Institute of Science and Technology, Korea, Republic of

  • Author: Jensen, Jakob Søndergaard

    Solid Mechanics, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800, Kgs. Lyngby, Denmark

  • Author: Wang, Semyung, Korea, Republic of

    School of Mechatronics, Gwangju Institute of Science and Technology, Korea, Republic of

View graph of relations

Traditionally, the objective of design optimization of an acoustic system is to reduce physical acoustic properties, i.e., sound pressure and power. However, since these parameters are not sufficient to present the relation of physical sound stimulus with human perceptual judgment, physical acoustic properties may not represent adequate parameters for optimizing acoustic devices. In this paper, we first present a design method for acoustical topology optimization by considering human's subjective conception of sound. To consider human hearing characteristics. Zwicker's loudness is calculated according to DIN45631 (ISO 532B). The main objective of this work is to minimize the main specific loudness of a target critical band rate by optimizing the distribution of the reflecting material in a design domain. The Helmholtz equation is used to model acoustic wave propagation and, it is solved using the finite element method. The sensitivity of the main specific loudness is calculated using the adjoint variable method and the chain rule. To demonstrate the effectiveness of the proposed method, various examples of noise barriers are presented with different source and receiver locations. The results obtained, using the optimized noise barriers that consider Zwicker's loudness, are compared with the results for straight and T-shaped barriers. The results are also compared with topology optimization using 1/3-octave band level as an objective function. The optimized noise barrier using the proposed method shows the best result with respect to a human's hearing sensation. (c) 2012 Elsevier B.V. All rights reserved.
Original languageEnglish
JournalComputer Methods in Applied Mechanics and Engineering
Publication date2012
Volume237-240
Pages130-151
ISSN0045-7825
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 2

Keywords

  • Topology optimization, Zwicker’s loudness, Main specific loudness, Noise barriers, 1/3-Octave band
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 10004562