Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS$_2$ from first principles (31/03/2019)

Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS$_2$ from first principles

We theoretically study the acoustic phonon limited mobility in n-doped two-dimensional MoS$_2$ for temperatures $T<100$ K and high carrier densities using the Boltzmann equation and first-principles calculations of the acoustic electron-phonon (el-ph) interaction. In combination with a continuum elastic model, analytic expressions and the coupling strengths for the deformation potential and piezoelectric interactions are established. We furthermore show that the deformation potential interaction has contributions from both normal and umklapp processes and that the latter contribution is only weakly affected by carrier screening. Consequently, the calculated mobilities show a transition from a high-temperature $\mu \sim T^{-1}$ behavior to a stronger $\mu \sim T^{-4}$ behavior in the low-temperature Bloch-Grüneisen regime characteristic of unscreened deformation potential scattering. Intrinsic mobilities in excess of 105 cm2 V$^{-1}$ s$^{-1}$ are predicted at $T<10$ K and high carrier densities ($n \geq 10^{11}$ cm$^{-2}$). At 100 K, the mobility does not exceed $\sim 7 \times 10^3$ cm2 V$^{-1}$ s$^{-1}$. Our findings provide new and important understanding of the acoustic el-ph interaction and its screening by free carriers, and is of high relevance for the understanding of acoustic phonon-limited mobilities in general.

General information
State: Published
Organisations: Department of Physics, Theoretical Atomic-scale Physics, Center for Atomic-scale Materials Design, Department of Micro- and Nanotechnology, Nanointegration, Theoretical Nanotechnology, Center for Nanostructured Graphene, Tel Aviv University
Contributors: Kaasbjerg, K., Thygesen, K. S., Jauho, A.
Number of pages: 15
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Physical Review B
Volume: 87
Issue number: 23
Article number: 235312
ISSN (Print): 1098-0121
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes